身份证识别——生成身份证号和汉字

还是直接代码吧(genIDCard.py),代码中有注释很容易读懂,原理跟验证码识别一样(tf20: CNN—识别字符验证码),都属于定长字符串识别,接下来也会介绍不定长数字串识别。

字体(fonts):here。

#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
身份证文字+数字生成类
@author: liupeng
"""
import numpy as np
import freetype
import copy
import random
import cv2

class put_chinese_text(object):
    def __init__(self, ttf):
        self._face = freetype.Face(ttf)

    def draw_text(self, image, pos, text, text_size, text_color):
        '''
        draw chinese(or not) text with ttf
        :param image:     image(numpy.ndarray) to draw text
        :param pos:       where to draw text
        :param text:      the context, for chinese should be unicode type
        :param text_size: text size
        :param text_color:text color
        :return:          image
        '''
        self._face.set_char_size(text_size * 64)
        metrics = self._face.size
        ascender = metrics.ascender/64.0

        #descender = metrics.descender/64.0
        #height = metrics.height/64.0
        #linegap = height - ascender + descender
        ypos = int(ascender)

        if not isinstance(text, unicode):
            text = text.decode('utf-8')
        img = self.draw_string(image, pos[0], pos[1]+ypos, text, text_color)
        return img

    def draw_string(self, img, x_pos, y_pos, text, color):
        '''
        draw string
        :param x_pos: text x-postion on img
        :param y_pos: text y-postion on img
        :param text:  text (unicode)
        :param color: text color
        :return:      image
        '''
        prev_char = 0
        pen = freetype.Vector()
        pen.x = x_pos << 6   # div 64
        pen.y = y_pos << 6

        hscale = 1.0
        matrix = freetype.Matrix(int(hscale)*0x10000L, int(0.2*0x10000L),\
                                 int(0.0*0x10000L), int(1.1*0x10000L))
        cur_pen = freetype.Vector()
        pen_translate = freetype.Vector()

        image = copy.deepcopy(img)
        for cur_char in text:
            self._face.set_transform(matrix, pen_translate)

            self._face.load_char(cur_char)
            kerning = self._face.get_kerning(prev_char, cur_char)
            pen.x += kerning.x
            slot = self._face.glyph
            bitmap = slot.bitmap

            cur_pen.x = pen.x
            cur_pen.y = pen.y - slot.bitmap_top * 64
            self.draw_ft_bitmap(image, bitmap, cur_pen, color)

            pen.x += slot.advance.x
            prev_char = cur_char

        return image

    def draw_ft_bitmap(self, img, bitmap, pen, color):
        '''
        draw each char
        :param bitmap: bitmap
        :param pen:    pen
        :param color:  pen color e.g.(0,0,255) - red
        :return:       image
        '''
        x_pos = pen.x >> 6
        y_pos = pen.y >> 6
        cols = bitmap.width
        rows = bitmap.rows

        glyph_pixels = bitmap.buffer

        for row in range(rows):
            for col in range(cols):
                if glyph_pixels[row*cols + col] != 0:
                    img[y_pos + row][x_pos + col][0] = color[0]
                    img[y_pos + row][x_pos + col][1] = color[1]
                    img[y_pos + row][x_pos + col][2] = color[2]


class gen_id_card(object):
    def __init__(self):
       #self.words = open('AllWords.txt', 'r').read().split(' ')
       self.number = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
       self.char_set = self.number
       #self.char_set = self.words + self.number
       self.len = len(self.char_set)
       
       self.max_size = 18
       self.ft = put_chinese_text('fonts/OCR-B.ttf')
       
    #随机生成字串,长度固定
    #返回text,及对应的向量18*10
    def random_text(self):
        text = ''
        vecs = np.zeros((self.max_size * self.len))
        #size = random.randint(1, self.max_size)
        size = self.max_size
        for i in range(size):
            c = random.choice(self.char_set)
            vec = self.char2vec(c)
            text = text + c
            vecs[i*self.len:(i+1)*self.len] = np.copy(vec)
        return text,vecs
    
    #根据生成的text,生成image,返回标签和图片元素数据
    def gen_image(self):
        text,vec = self.random_text()
        img = np.zeros([32,256,3])
        color_ = (255,255,255) # Write
        pos = (0, 0)
        text_size = 21
        image = self.ft.draw_text(img, pos, text, text_size, color_)
        #仅返回单通道值,颜色对于汉字识别没有什么意义
        return image[:,:,2],text,vec

    #单字转向量
    def char2vec(self, c):
        vec = np.zeros((self.len))
        for j in range(self.len):
            if self.char_set[j] == c:
                vec[j] = 1
        return vec
        
    #向量转文本
    def vec2text(self, vecs):
        text = ''
        v_len = len(vecs)
        for i in range(v_len):
            if(vecs[i] == 1):
                text = text + self.char_set[i % self.len]
        return text

if __name__ == '__main__':
    
    # 生成数字串
    genObj = gen_id_card()
    image_data,label,vec = genObj.gen_image()
    cv2.imshow('image', image_data)
    cv2.waitKey(0)
    
    # 生成汉字串
    line = '湖南省邵阳县'
    img = np.zeros([300,300,3])
    color_ = (255,255,255) # Green
    pos = (3, 3)
    text_size = 20
    #ft = put_chinese_text('fonts/msyhbd.ttf')
    ft = put_chinese_text('fonts/huawenxihei.ttf')
    no = put_chinese_text('fonts/OCR-B.ttf')
    image = ft.draw_text(img, pos, line, text_size, color_)
    image1 = no.draw_text(image, (50,50), '1232142153253215', 20, (255,255,255))
    cv2.imshow('ss', image)
    cv2.imshow('image1', image1)
    cv2.waitKey(0)

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏大数据风控

Python中的交叉分析pivot_table

交叉分析 通常用于分析两个或两个以上,分组变量之间的关系,以交叉表形式进行变量间关系的对比分析; 从数据的不同维度,综合进行分组细分,进一步了解数据的构成、分...

3178
来自专栏机器之心

教程 | 在Python和TensorFlow上构建Word2Vec词嵌入模型

选自adventuresinmachinelearning 机器之心编译 参与:李诗萌、刘晓坤 本文详细介绍了 word2vector 模型的模型架构,以及 T...

4867
来自专栏zingpLiu

机器学习之线性代数

  完整内容已上传到github:https://github.com/ZingP/machine-learning/tree/master/linear_al...

1961
来自专栏专知

【干货】计算机视觉实战系列02——用Python做图像处理

【导读】在当今互联网蓬勃发展的时代,图像处理技术也随着人们的需求不断进步,专知成员Hui计划推出一系列计算机视觉入门实战讲解,参照Jan Erik Solem编...

1.7K13
来自专栏技术随笔

[RNN] Simple LSTM代码实现 & BPTT理论推导

4994
来自专栏每日一篇技术文章

OpenGL ES _ 着色器_片断着色器详解

输入值:片段着色器接受顶点管线最终输出的迭代值,这些值包括片段的位置,已解析的主颜色和辅助颜色,一系列的纹理坐标以及片段的雾坐标距离。

2801
来自专栏xingoo, 一个梦想做发明家的程序员

动态规划基本要素

动态规划性质: 1  最优子结构性质  2 子问题重叠性质 ----->该问题可用动态规划算法求解的基本要素 1 最优子结构 当问题的最优解包含了其子问题的最优...

21510
来自专栏数值分析与有限元编程

CSR存储刚度矩阵

CSR(Compressed Sparse Row Storage Format)是一种非常有效的稀疏矩阵的存储方法,它按行将稀疏矩阵存储在一个一维实型数组中,...

3255
来自专栏逍遥剑客的游戏开发

基于法线的边缘检测

1703
来自专栏SeanCheney的专栏

Numpy和MatplotlibPython科学计算——Numpy线性代数模块(linalg)随机模块(random)Python的可视化包 – Matplotlib2D图表3D图表图像显示

Python科学计算——Numpy Numpy(Numerical Python extensions)是一个第三方的Python包,用于科学计算。这个库的前身...

6354

扫码关注云+社区

领取腾讯云代金券