前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >用 Python 分析《红楼梦》(2)

用 Python 分析《红楼梦》(2)

作者头像
Python中文社区
发布2018-02-01 10:27:28
1.8K0
发布2018-02-01 10:27:28
举报
文章被收录于专栏:Python中文社区Python中文社区

專 欄

楼宇,Python中文社区专栏作者。一位正在海外苦苦求学的本科生。初中时自学编程,后来又在几位良师的帮助下走上了计算机科学的道路。曾经的 OIer,现暂时弃坑。兴趣不定,从机器学习、文本挖掘到文字识别以及各种杂七杂八的知识都有一点点涉猎。同时也对物理学有相当大的兴趣。

知乎:https://www.zhihu.com/people/lou-yu-54-62/posts

GitHub:https://github.com/LouYu2015❈

用 Python 分析《红楼梦》(1)

6 词频统计

完成分词以后,词频统计就非常简单了。我们只需要根据分词结果把片段切分开,去掉长度为一的片段(也就是单字),然后数一下每一种片段的个数就可以了。

这是出现次数排名前 20 的单词:

(括号内为频数)

可以跟之前只统计出现次数,不考虑切分问题的排名做个对比:

(括号内为频数)

通过分词后的词频,我们发现《红楼梦》中的人物戏份由多到少依次是宝玉、凤姐、贾母、袭人、黛玉、王夫人和宝钗。然而,这个排名是有问题的,因为”林黛玉”这个词的出现次数还有 267 次,需要加到黛玉的戏份里,所以其实黛玉的戏份比袭人多。同理,“老太太”一般是指贾母,所以贾母的戏份加起来应该比凤姐多。正确的排名应该是宝玉、贾母、凤姐、黛玉、袭人、王夫人和宝钗。

此外,我们还发现《红楼梦》中的人物很爱笑,因为除了人名以外出现次数最多的单词就是“笑道” : )

我把完整的词频表做成了一个网页,感兴趣的话可以去看一下:红楼词表 第二版

最后,我随机选择了词频表中的 200 项条目,用来估计其中有多少是真正的单词。其中有 82 条是单词:

而 118 条不是单词:

也就是说,单词的正确率只有 41 %。这比字典的准确率还低,并没有因为采用了分词算法而提高了正确率。不过这也可以理解,因为生成字典的时候我只考虑了出现次数大于 5 的片段,而分词的时候有些单词只出现了一次,所以难度确实应该更大一些。

词频表中总计有 3.99 万个条目。根据估算的词频表中正确单词的比例,我估计《红楼梦》的词汇量大约是 1.6 万。有人用其他程序估计《红楼梦》的词汇量是 0.45 万(http://bbs.creaders.net/politics/bbsviewer.php?trd_id=344894),不过作者没有描述详细的统计方法,所以我对其结果非常怀疑,因为《红楼梦》中的单字就有 0.35 万种了。

7 筛选特征词

终于做完了分词,又离目标靠近了一大步。现在,我可以用之前看到的那篇文章里提到的 PCA 算法来分析章回之间的差异了。不过在此之前,我想先反思一下,到底应该用哪些词的词频来进行分析?

在很多用 PCA 分析《红楼梦》的博文里,大家都是用出现频率最高的词来分析的。然而问题是,万一频率最高的词是和情节变化相关的呢?为了剔除情节变化的影响,我决定选出词频随情节变化最小的单词来作为每一章的特征。而我衡量词频变化的方法就是统计单词在每一回的词频,然后计算标准方差。为了消除单词的常用程度对标准方差的影响,我把标准方差除以该单词在每一回的平均频数,得到修正后的方差,然后利用这个标准来筛选特征词。

按照这个标准,与情节最无关的 20 个词是:

(括号内为修正后的方差)

有趣的是,处在排名末尾的词,也就是词频变化最大的词,大部分都是人名:

可见这个筛选方法确实能去掉我们不想要的特征词。

最终,我选择了词频变化最小的 50 个词作为特征,每个词的修正后标准方差都小于 0.85。这 50 个词如下:

8 主成份分析(PCA)

理论上,有了特征之后,我们就可以比较各个章节的相似性了。然而问题是,现在我们有 50 个特征,也就是说现在的数据空间是 50 维的,这对于想象四维空间都难的人类来说是很难可视化的。对于高维数据的可视化问题来说,PCA 是一个很好用的数学工具。

9.1 何谓是主成份分析

因为高维的数据空间很难想象,所以我们可以先想象一下低维的情况。比如说,假设下图中的每个点都是一个数据,横坐标和纵坐标分别代表两个特征的值:

现在,如果我们让 PCA 程序把这两个特征压缩成一个特征的话,算法就会寻找一条直线,使得数据点都投影到这条直线上后损失的信息最少(如果投影不好理解的话,可以想象用两块平行于直线的板子把数据点都挤压到一条线上)。在这个例子中,这条线损失信息最少的线就是图中较长的那个箭头。这样,如果我们知道了一个数据点在直线上投影的位置,我们就能大致知道数据点在压缩之前的二维空间的位置了(比如是在左上角还是右下角)。

以上是把二维数据空间压缩到一维的情况。三维压缩到二维的情况也是类似的:寻找一个二维平面,使得数据点投影到平面后损失的信息最少,然后把所有数据点投影到这个平面上去。三维压缩到一维就是把寻找平面改成寻找直线。更高维度的情况以此类推,虽然难以想象,但是在数学上是一样的。

至于算法如何找到损失信息最少的二维平面(或者直线、三维平面等等),这会涉及到一些数学知识,感兴趣的同学可以去查找一下相关的数学公式和证明。这里只要把这个算法当成一个黑箱就可以了。

9.2 重大发现?

现在我们可以利用 PCA,把五十个词的词频所构成的五十个维度压缩到二维平面上了。我把压缩后的数据点画出来,发现是这个样子的:

(图中每个圆圈代表一个回目。圆圈内是回目编号,从 1 开始计数。红色圆圈是 1-40 回,绿色圆圈是 41-80回,蓝色圆圈是 81-120 回。)

80 回以后的内容(蓝色)大部分都集中在左下角的一条狭长的区域内,很明显地和其他章回区分开来了!莫非《红楼梦》的最后 40 回真的不是同一个作者写的?!

别着急,分析还没结束。PCA 的一个很重要的优点就是,它的分析结果具有很强的可解释性,因为我们可以知道每一个原始特征在压缩后的特征(或者说成分)中的权重。从上图中可以看到,后 40 回的主要区别在于成分二(component 2)的数值。因此我们可以看一看每一个词的词频在成分 2 中的权重排名:

(括号内为权重)

我发现,“笑道”这个词不仅是除了人名以外出现次数最多的单词,而且在 PCA 结果中的权重也异常地高(0.88),甚至超过了“宝玉”的权重的绝对值(0.31)!为了搞明白这个词为什么有这么大的权重,我把“笑道”的词频变化画了出来:

(图中横坐标是章回编号,纵坐标是“笑道”的词频)

可以发现,“笑道”的词频是先增加再减少的,这不禁让我联想到了贾府兴衰的过程。莫非“笑道”的词频和贾府的发展状况有关?有趣的是,“笑道”的词频顶峰出现在第 50 回左右,而有些人从剧情的角度分析认为贾府的鼎盛时期开始于第 48、49 回,恰好重合:

《红楼梦》之“钗黛合一”带来大观园鼎盛风之子9881198198新浪博客

[转载]白坤峰讲红楼梦(172)贾府鼎盛:该来的都来了史鼎说红楼新浪博客

也许“笑道”这一看似平常的词汇确实侧面反应了贾府的兴衰史呢。虽然因果关系有待考证,不过想想也有一点道理,毕竟只有日子过的好的时候人们才会爱笑。

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2017-09-22,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 Python中文社区 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
文字识别
文字识别(Optical Character Recognition,OCR)基于腾讯优图实验室的深度学习技术,将图片上的文字内容,智能识别成为可编辑的文本。OCR 支持身份证、名片等卡证类和票据类的印刷体识别,也支持运单等手写体识别,支持提供定制化服务,可以有效地代替人工录入信息。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档