如何在Python中用Bokeh实现交互式数据可视化?

引言

最近,我一直在看美国德克萨斯州奥斯汀举办的SciPy 2015会议上的一段视频——“用Blaze和Bokeh创建Python数据应用程序”,并且情不自禁地反复思考这两个库赋予世界各地使用Python的数据科学家们的强大能力。在本文中,我将带你体验使用Bokeh实现数据可视化的各种可能途径,以及Bokeh为什么是每位数据科学家的必备“神器”。

什么是Bokeh?

Bokeh是一个专门针对Web浏览器的呈现功能的交互式可视化Python库。这是Bokeh与其它可视化库最核心的区别。正如下图所示,它说明了Bokeh如何将数据展示到一个Web浏览器上的流程。

正如你所看到的,Bokeh捆绑了多种语言(Python, R, lua和Julia)。这些捆绑的语言产生了一个JSON文件,这个文件作为BokehJS(一个Javascript库)的一个输入,之后会将数据展示到现代Web浏览器上。

Bokeh可以像D3.js那样创建简洁漂亮的交互式可视化效果,即使是非常大型的或是流数据集也可以进行高效互动。Bokeh可以帮助所有人快速方便地创建互动式的图表、控制面板以及数据应用程序。

Bokeh能为像我这样的数据科学家提供什么?

我起初是作为一名商业智能从业者(BIprofessional)开始我的数据科学之旅的,随后,又逐渐学习了预测建模,数据科学和机器学习。我主要使用QlikView和Tableau进行数据可视化,用SAS和Python来做预测分析和数据分析。我几乎没有用过JavaScript。

因此,对于我之前所有的数据产品或想法,我只能要么将其外包要么通过网站线框图向别人展示,这两者都不适合创建快速原型。现在,有了Bokeh,我就可以继续使用Python,并且快速创建这些原型。

Bokeh的优势:

  • Bokeh允许你通过简单的指令就可以快速创建复杂的统计图,
  • Bokeh提供到各种媒体,如HTML,Notebook文档和服务器的输出
  • 我们也可以将Bokeh可视化嵌入flask和django程序
  • Bokeh可以转换写在其它库(如matplotlib, seaborn和ggplot)中的可视化
  • Bokeh能灵活地将交互式应用、布局和不同样式选择用于可视化

Bokeh面临的挑战:

  • 与任何即将到来的开源库一样,Bokeh正在经历不断的变化和发展。所以,你今天写的代码可能将来并不能被完全再次使用。
  • 与D3.js相比,Bokeh的可视化选项相对较少。因此,短期内Bokeh无法挑战D3.js的霸主地位。

综合Bokeh的优点及其面临的挑战,Bokeh是当前用于快速开发原型产品的理想工具。然而,如果你想在产品的环境下搞点新东西,D3.js可能仍然是你最好的选择。

用Bokeh实现可视化

Bokeh提供了强大而灵活的功能,使其操作简单并高度定制化。它为用户提供了多个可视化界面,如下图所示:

  • 图表(Charts):一个高级接口(high-level interface),用以简单快速地建立复杂的统计图表。
  • 绘图(Plotting):一个中级接口(intermediate-level interface),以构建各种视觉符号为核心。
  • 模块(Models):一个低级接口(low-level interface),为应用程序开发人员提供最大的灵活性。

本文中,我们仅涉及前两个接口,图表(Charts)和绘图(Plotting)。

图表

如上所述,它是一个高级接口,用于通过标准的可视化方式呈现信息。这些方式包括箱形图、柱状图、面积图、热图、甜甜圈图和许多其它图形。你只需输入数据框(data frames)、numpy数组或字典就可以生成这些图。

让我们来看看创建一个图表的通用方法:

1. 导入库和函数/方法

2. 准备数据

3. 设置输出模式(Notebook文档、Web浏览器或服务器)

4. 创建图表并选择图表的样式(如果需要)

5. 可视化图表

为了更好地理解这些步骤,让我用下面的例子来演示一下:

图表范例-1:使用Bokeh创建一个柱状图并在Web浏览器上显示

我们将遵循上述列出的步骤来创建一个图表:

在上面的图表中,你可以看到顶部的工具选项(缩放、调整大小、重置、旋转缩放),这些工具可以帮助你与图表进行互动。同时,你也可以看到多个图表选项(图例、X轴名标注、Y轴名标注、坐标网格线、宽度、高度等)和各种图表的范例。

图表范例-2:在Notebook文档中,利用箱线图比较IRIS数据集中的萼片长度(sepal length)和花瓣长度(petal length)的分布情况

要创建这个可视化图表,我首先要使用Sklearn库导入IRIS数据集。然后,按照上述步骤在ipythonNotebook文档中进行图表可视化。

图表范例-3:创建一个线图到Bokeh服务器

在绘制可视化图表到Bokeh服务器之前,你首先需要运行服务器。

如果你使用的是conda包,你可以在任何目录下使用运行命令“bokeh-server”。如果不是,“python ./bokeh-server”通常也可以。

在Bokeh服务器上进行可视化绘图有多个优点:

图表有更多的受众

可对大数据集进行交互式可视化

可根据数据流自动更新图表

创建控制面板和应用程序

开始在Bokeh服务器上绘图之前,我先运行了“bokeh-server”指令对其进行初始化,然后再运行用于可视化的相关指令。

绘图

Plotting是一个中级接口,是以构建视觉符号为核心的接口。在这里,你可以综合各种视觉元素(点、圆、线、补丁和许多其它元素)和工具(悬停、缩放、保存、重置和其它工具)来创建可视化。

使用Bokeh的Plotting接口创建的图表自带一组默认的工具和视觉效果。绘图可按照以下步骤进行:

1. 导入库、方法或函数

2. 选择输出方式(Notebook文档、Web浏览器、服务器)

3. 激活图(类似matplotlib)

4. 执行后续的绘图操作,这将影响已经生成的图形。

5. 图表可视化

为了更好地理解这些步骤,让我举例演示:

绘图范例-1:在Notebook文档中创建二维散点图(正方形标记)

同样,你可以创建各种其它类型的图:如线、角和圆弧、椭圆、图像、补丁以及许多其它的图。

绘图范例-2:将两种视觉元素合并在一张图中

绘图范例-3:为上图添加一个悬停工具和坐标轴标签

绘图范例-4:使用纬度和经度数据来绘制印度地图

注:我已经有一个CSV格式的印度边界的纬度和经度的多边形数据。我将使用该数据来绘图。

在这里,我们将使用补丁绘图,让我们看看下面的命令:

结语

在本文中,我们讨论了用Bokeh创建可视化以及如何将可视化结果呈现在Notebook文档、html文档以及bokeh服务器上。我们还谈到了如何使用绘图接口创建个性化的可视化图表,通过该功能,你可以将多种视觉元素结合到一起来展示数据信息。

原文发布于微信公众号 - CDA数据分析师(cdacdacda)

原文发表时间:2016-02-02

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器学习算法与Python学习

资源 | 让你事半功倍的小众Python库

Python 是世界上发展最快的编程语言之一。它一次又一次地证明了自己在开发人员和跨行业的数据科学中的实用性。Python 及其机器学习库的整个生态系统使全世界...

12620
来自专栏量子位

苹果新推出的CoreML怎么用?有哪些bug?这里有一份教程

安妮 编译自 Hackernoon 量子位出品 | 公众号 QbitAI 昨天,年仅18岁的iOS app开发者Alex Wulff在Hackrnoon上发布了...

36770
来自专栏机器之心

开源 | 基于Metal的机器学习框架Bender:可在iOS上运行TensorFlow模型

选自GitHub 机器之心编译 参与:吴攀 在正在举行的 WWDC 2017 上,苹果宣布发布了 Metal 2,详情可参阅机器之心的报道《苹果开发者大会 W...

40290
来自专栏华章科技

使用python抓取婚恋网用户数据并用决策树生成自己择偶观

之前在世纪佳缘上爬取过类似的数据,总体的感觉是上面的用户数据要么基本不填要么一看就很假,周围的一些老司机建议可以在花田网上看下,数据质量确实高很多,唯一的缺点就...

9520
来自专栏灯塔大数据

分析 | Python抓取婚恋网用户数据,原来这才是年轻人的择偶观

刚好在看决策树这一章,书里面的理论和例子让我觉得这个理论和选择对象简直不能再贴切。看完长相看学历,看完学历看收入。

27430
来自专栏瓜大三哥

多周期路径的约束

放松时序要求 ? 应用1:clk1和clk2是同频但不同相,其中clk2相对于clk1有正向的相位偏移 set_multicycle_path -from [...

391100
来自专栏AI研习社

数据太大爆内存怎么办?七条解决思路 | 机器学习开发手册

Jason Brownlee 在研究、应用机器学习算法的经历中,相信大伙儿经常遇到数据集太大、内存不够用的情况。 这引出一系列问题: 怎么加载十几、几十 GB...

500100
来自专栏数据科学与人工智能

【Python环境】探索 Python、机器学习和 NLTK 库

挑战:使用机器学习对 RSS 提要进行分类 最近,我接到一项任务,要求为客户创建一个 RSS 提要分类子系统。目标是读取几十个甚至几百个 RSS 提要,将它们的...

30580
来自专栏机器之心

教程 | 如何使用Swift在iOS 11中加入原生机器学习视觉模型

选自Hackernoon 机器之心编译 作者:Alex Wulff 参与:侯韵楚、李泽南 随着 WWDC 大会上 iOS 11 的发布,苹果终于推出了原生机器学...

32450
来自专栏祝威廉

MLSQL解决了什么问题

MLSQL提供了一套SQL的超集的DSL语法MLSQL,数据处理,模型训练,模型预测部署等都是以MLSQL语言交互,该语言简单易懂,无论算法,分析师,甚至运营都...

11320

扫码关注云+社区

领取腾讯云代金券