手把脚教你实现第一个在线预测系统No.21

本来呢,最近看了人类简史,想写一篇偏见相关的,思路还没整理好不好放出来,先写个技术的吧。最近真是忙成狗,搬职场,找房子租,参加各种各样的会议,还有开发任务,做屁屁踢,接下来架构的规划,知识储备。

可是毕竟我也不想跳票的嘛。T_T

说实话。

时间还是蛮充裕的,啊哈哈哈哈哈哈!!!!!!!

突然想起上一篇忘了开原创忘了开赞赏而且忘了放二维码,现在心塞塞塞塞塞的,大家点个赞或者分享一下我会很开心的。

今天就用比较主流的架构,来简单实现这个在线预测系统,来完全打消小伙伴们对机器学习的恐惧感,它不难,但是我从没说过它很简单。

整套代码核心的代码不超过10行,相信我,就算你完全不会任何数学,也不会对开发造成任何的影响。

当然我之前说过,想要往深了做,要有扎实的数学和英语基础。为什么??因为AI这个技术还是个小BB,还没长大,还要用各种各样的论文来喂它茁壮长大,要是看不懂别人的论文或者无法复现,那咋跟进最新技术进展??

架构是django+scikit-learn,这个在我上一篇已经提到过了,这是最最最简单的实现方式,不服来辩。

敲黑板!!!课前要准备好这些,开发环境环境为ubuntu14.04,不会安装的,问度娘或者谷哥去。

python2.7,pip,django,scikit-learn,pandas,numpy,Pycharm,。

好,随便找个目录,哐哐哐输入下面这样django初始化项目的脚本。

django-admin startproject ph_ml_core

好了,项目初始化完了。目录结构长啥样的呢?

看起来特么好多啊,那既然说了很简单了,其实绝大部分我们都不需要去改动。那,有哪些是我们自己要去写的呢?

Advertising.csv是数据文件,QualifiedModel.py是我们核心的业务逻辑代码,view.py是我们的视图,urls.py是django的路由+控制器。

第一步先给我们的系统加一个路径叫predict的玩意,这个就是暴露给http请求的接口,至于咋实现或者啥意思,就是个正则表达式有兴趣的小伙伴自己去看。

urlpatterns = [
    url(r'^admin/', admin.site.urls),
    url(r'^predict/$', predict),
]

第二步就是写视图了,这个比较掺杂,大致意思就是调用一个模型进行评分,核心的就这一句score = qual.predict()。

没错调模型就是这么简单。

def predict(request):
    # 获得请求数据,并转成字典格式。

    rowData = eval(request.GET['a'])
    # 获得已经训练好的模型

    qual = QualifiedModel()
    # 直接对新进件的数据进行评分
    score = qual.predict(np.array([[rowData['TV'],rowData['Radio'],rowData['Newspaper']]]))
    # 组装返回数据

    result = {}
    result['score'] = score[0]
    return HttpResponse(json.dumps(result),content_type='application/json')

第三步,训练模型,就在上一步我们调用了模型,那模型怎么来的呢?肯定是通过我们的训练数据来的。这里使用Lasso,什么是Lasso我这里就不介绍了有必要的话我后面起个文章单独说,现在先自行问度娘去,一个线性模型。

哈什么?你对模型不熟,不会对模型调参?没问题,sklearn都帮咱实现好了,直使用交叉验证,连调参都不用了。交叉验证是什么,就是给它一大堆参数组合,然后我不管,我就要那个训练结果最佳的。

    def initModel(self):


        #获取数据
        data = pd.read_csv(os.path.join(os.path.abspath(os.path.dirname(__file__)),'Advertising.csv'))
        #取得特征值

        x = data[['TV','Radio','Newspaper']]
        #取得结果值
        y = data['Sales']
        #通过交叉验证训练得到最佳模型

         model = Lasso()
        alpha_can = np.logspace(-3, 2, 10)
        np.set_printoptions(suppress=True)
        lassoModel = GridSearchCV(model,param_grid={'alpha':alpha_can},cv=5)
        lassoModel.fit(x_train,y_train)

第四步,调用试试看吖。

http://127.0.0.1:8000/predict/?a={"TV": 65, "Newspaper": 15, "Radio": 30}

返回:{"score": 11.328439830355411}

http://127.0.0.1:8000/predict/?a={"V": 29, "Newspaper": 15, "Radio": 30}

返回:{"score": 9.6539587774368592}

到这里,我们所有的功能都已经实现完了。是不是非常简单?其实我们很多时候害怕一个东西是因为这个东西不熟悉,就像我之前说的,做做做,做起来,慢慢你就不怕了。

在这里我要说一个事实,智商是不可逾越的,这句话还真有可能是正确的。让一个智商普通的人去突破物理学的界限,这显然,不太可能会实现,只能说P(突破物理界限|已知是一个智商普通的人)很低,我这里说的智商是思维能力,并不是指什么什么智商测试的结果。但是也是很明显的,很多人都是日复一日做着一样的事情,被各种各样的会议,各种各样的繁琐的事情,禁锢了自己的思维,也禁锢了自己的潜力,都没到开始拼智商的时候好吗??

到现在还有人说开发工程师是一个要求很高的职业,其实这个职业的要求真心不算高,任何一个经过系统培训的小白,都能按照老师教的结果哐哐哐写出一些"业务逻辑",但要是止步于此不去做任何的思考,不理解为什么是这样做,那你的上限也就这样了。

凡事问三层,"为什么这样就有这样的效果呢"?可能会有不同的结果。

但是呢,在你跟别人讨论或者请教的时候,自己还是要先有料,自己做足各种各样的研究,准备好各种各样的资料,再去开始请教,可能会比较。不然我就会说一句乔布斯回答别人经常说的话---"it is complicated",没错,那我只能告诉你,这很复杂。

当然付费的一般就不存在这个问题,比如老师啊,培训师啊,各种网红的收费栏目啊,就不存在这个问题。为什么呢,因为你做了其他的努力去赚取这个付费的款项,也算是做足准备了吖。

获取这次的小玩具:

http://pan.baidu.com/s/1o8bmDmi 提取码:a4ww,

大家一起愉快地玩耍吧。要是分享给其他小伙伴我会很开心的。

原文发布于微信公众号 - 一名叫大蕉的程序员(DaBananaTalk)

原文发表时间:2017-06-23

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏人人都是极客

如何利用树莓派打造一款机器人

作者/刘端阳,清华大学aminer.org研究者社交网络系统的R&D,参与过智谷睿拓公司(已经被小米收购)的专利挖掘,在大数据征信领域创业过,出过一本叫做《树莓...

77770
来自专栏云加头条

基于用户画像大数据的电商防刷架构

最近1~2年电商行业飞速发展,各种创业公司犹如雨后春笋大量涌现,商家通过各种活动形式的补贴来获取用户、培养用户的消费习惯。但任何一件事情都具有两面性,高额的补贴...

24.2K70
来自专栏ATYUN订阅号

微软推出iPad应用Earth Lens,使用AI来检测卫星图像中的物体

微软Garage的最新项目之一,利用AI来确定卫星图像中需要注意的精确项目。Earth Lens是今天推出的一款新的开源iPad应用程序,识别,跟踪和分析距离地...

10330
来自专栏企鹅号快讯

机器学习的网络罪犯

AiTechYun 编辑:nanan ? 机器学习正遭受来自网络安全方面的困扰。而最近的调查结果显示了网络犯罪分子如何利用机器学习来使攻击变得更好、更快。 本文...

22190
来自专栏mwangblog

组块构建——《学习之道》(Barbara Oakley)读书笔记二

高质量的组块构成的神经模型,不仅能与我们钻研的学科产生共鸣,也能在其他学科或生活领域产生反响。

21520
来自专栏WeTest质量开放平台团队的专栏

你手机的电都去哪儿了?

与传统的APP相比,手游的耗电量那可不是盖的,手机还有10%的电,玩局游戏吧,正玩着HIGH呢,马上就要破记录了,无情的手机提示电量耗尽30秒后强制关机,欲哭无...

27330
来自专栏AI科技评论

动态 | 谷歌开源FHIR标准协议缓冲工具,利用机器学习预测医疗事件

AI科技评论按:在上月 26 日,谷歌在 arXiv 上发表的一篇论文《Scalable and accurate deep learning for elec...

32560
来自专栏SDNLAB

Edgecore和Adva联手开发白盒网关

Edgecore Networks和Adva周二宣布,他们正在开发移动蜂窝基站的白盒网关,作为Facebook电信基础设施项目(TIP)的一部分。

14410
来自专栏人工智能LeadAI

一个优雅的框架 | Pytorch 初体验

pytorch是啥呢?其实pytorch是一个python优先的深度学习框架,是一个和tensorflow,Caffe,MXnet一样,非常底层的框架,它的前身...

43990
来自专栏量子位

机器学习论文+代码大全,这个网站请收藏好

一个网站,关于机器学习的网站,在著名的reddit上获得国外网友的热情追捧。如果你要问为什么,其实特别简单。

15220

扫码关注云+社区

领取腾讯云代金券