专栏首页CSDN技术头条大数据行业生态图谱3.0——信息图

大数据行业生态图谱3.0——信息图

创业者们纷纷涌入大数据市场,尾随的VC们也是挥金如土,导致大数据创业市场目前已经非常拥挤。虽然大数据创业市场已经人山人海,但是依然有足够的空间给新的创业公司,现阶段大数据基础设施和分析工具领域的创新吸引了大量的资金,FirstMark资本的MattTurck绘制了大数据生态地图2.0版本,涵盖了大数据的38种商业模式,被业界奉为大数据创业投资的清明上河图。经过漫长的等待,Turck终于推出大数据生态地图3.0版本。他对大数据市场的几个最为关键的演变趋势做出预测。

以下为原文:

2012年,FirstMark资本的MattTurck绘制了大数据生态地图2.0版本,涵盖了大数据的38种商业模式,被业界奉为大数据创业投资的清明上河图。两年后的今天,经过漫长的等待,Turck终于推出大数据生态地图3.0版本。(期间bloomberg推出过一个2013版大数据生态地图)

在大数据生态地图3.0版中,Turck从一个风险投资者的角度对两年来大数据市场的最新发展进行了深入的研判,并对未来趋势进行解读,以下是Turck眼中大数据市场的几个最为关键的演变趋势:

竞争加剧:创业者们纷纷涌入大数据市场,尾随的VC们也是挥金如土,导致大数据创业市场目前已经非常拥挤。例如一些创业项目类别,例如数据库(无论是NoSQL还是NewSQL),或者社交媒体分析,目前正面临整合或去泡沫化(随着Twitter收购BlueFin和GNIP,社交分析领域的整合已经开始)

虽然大数据创业市场已经人山人海,但是依然有足够的空间给新的创业公司,现阶段大数据基础设施和分析工具领域的创新吸引了大量的资金,当然,这类大数据创业本来就是资金密集型项目。

大数据市场尚处于初期阶段:虽然大数据的概念已经热炒了数年,但我们依然处于市场的早期阶段,虽然过去几年类似Drawn和Scale这样的公司失败了,但是相当多的公司已经看到了胜利的曙光,例如Infochimps、Causata、Streambase、ParAccel、Aspera、GNIP、BlueFinLanbs、BlueKai等。

还有不少大数据创业公司已经形成规模和气候,并且获得了海量融资,例如MongoDB已经募集2.3亿美元,Plalantir9亿,Cloudera1亿。但是就成功的IPO或公司而言,市场尚处于早期阶段(虽然已经有Splunk、Tableau等成功IPO)。

此外,目前阶段一些传统IT巨头已经展开了收购大战,例如Oracle收购BlueKai和IBM收购Cloudant。在很多大数据创业领域,创业公司们依然在为市场领袖的地位展开混战。

从炒作回归现实:虽然经过几年声嘶力竭的热潮后,媒体对大数据已经有些审美疲劳,但这恰恰是大数据真正落地的重要阶段的开始。未来几年是大数据市场竞争的关键时期,企业的大数据应用从概念验证和实验走向生产环境,这意味着大数据厂商的收入将快速增长。当然,这也是一个检验大数据是否真的有“大价值”的时期。

大数据基础设施:虽然Hadoop已经确立了其作为大数据生态系统基石的地位,但市场上依然有不少Hadoop的竞争和替代产品,但这些产品还需要时间进化。基于Hadoop分布式文件系统的开源框架Spark近来成为人们讨论的热门话题,因为Spark能够弥补Hadoop的短板,例如提高互动速度和更好的编程界面。而快数据(实时)和内存计算也始终是大数据领域最热门的话题。一些新的热点也在不断涌现,例如数据转换整理工具Trifacta、Paxata和DataTamer等。

时下一个关键的争论是企业数据是否会转移到云端(公有云或者私有云),如果是,什么时候会发生?一些基于云端的Hadoop服务创业公司例如Qubole、Mortar坚信从长远看所有企业数据最终都会转移到云端。

大数据分析工具:就创业者和VC的活跃度而言,大数据分析是大数据市场最活跃的领域。从电子表格到时间线动画再到3D可视化,大数据创业公司们提供了各种各样的分析工具和界面,有的面向数据科学家,有的选择绕过数据科学家直接面向业务部门,由于不同的企业对分析工具的类型有不同的偏好,因此每个创业公司在自己的细分领域都有机会。

大数据应用:大数据应用的发展进程相对缓慢,但目前阶段大数据确实已经进入了应用层。从大数据生态地图3.0中我们可以看到,一些创业公司开发出了大数据通用应用,例如大数据营销工具、CRM工具或防欺诈解决方案等。还有一些大数据创业公司开发出了面向行业用户的垂直应用。金融和广告行业是大数据应用起步最早的行业,甚至在大数据概念出现之前就已经开始了。未来大数据还将在更多行业得到广泛应用,例如医疗、生物科技(尤其是基因组学)和教育等。

本文分享自微信公众号 - CSDN技术头条(CSDN_Tech)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2014-05-30

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 深度长文丨大数据,小数据,哪道才是你的菜?

    美国著名科技历史学家梅尔文•克兰兹伯格(Melvin Kranzberg),曾提出过大名鼎鼎的科技六定律,其中第三条定律是这样的[1]:“技术是总是配“套”而来...

    CSDN技术头条
  • 如何打造高性能大数据分析平台

    原文:Building High Performance Big Data Analytics Systems 译者:袁璞,圣特尔•E店宝大数据架构师,关注高性...

    CSDN技术头条
  • 51个你需要知道的大数据术语

    每天数十亿字节的数据收集下,了解大数据的复杂内涵非常重要。为了帮助你了解这一领域,我们从最近的大数据指南中编辑了一个列表,列出了最重要的相关术语和定义。 你认...

    CSDN技术头条
  • 投稿 | 深耕细作数据的宇宙魔方:如何做到集中化、全流程数据运营管理?

    <数据猿导读> 数据作为高价值的资产已经得到越来越广泛的认识和赞同。由企业自主生产的数据、通过外部合作服务获取的数据、外部经授权公开的数据等共同构成了企业赖以持...

    数据猿
  • 数据产品经理,并不是数据 + 产品经理

    近年来,随着大数据、人工智能、精细化运营的不断被重视,各大公司对于数据的处理和分析应用,越来越普及。

    用户1756920
  • CrowdFlower数据科学家17年调查报告:情愿断腿也不想丢数据

    大数据文摘
  • 中科院自动化所王亮:由AI Challenger漫谈数据集的重要性

    李根 发自 凹非寺 量子位 报道 | 公众号 QbitAI AI火热,但并不是所有人都清楚“数据集”的意义。 首届“AI Challenger·全球AI挑战赛...

    量子位
  • 顶级AI【数据】资源送给你!

    本文为大家列举了八大主流数据集来源,不仅包含大量的数据集信息,而且包含了描述、用法以及一些实施案例等。

    昱良
  • 75.9%受访者发现存在“大数据”滥用现象

    电子科技大学互联网科学中心主任、《大数据时代》中文翻译者周涛认为,企业有没有“大数据”能力,分析报告是否包含“大数据”成分,要看是否具备两个特征:一是数据本身...

    腾讯研究院
  • 【华尔街日报】数据竞争价值:从商业分析到机器学习

    【新智元导读】 本文以较长的时间维度,从商业分析到机器学习,分析数据在企业中的竞争价值所在和变化。作者提出,数据驱动的AI越来越多地应用于需要智力和认知能力的任...

    新智元

扫码关注云+社区

领取腾讯云代金券