分析型数据仓库中读写分离的实现

和以 MySQL 为代表的传统事务型数据库相比,数据仓库有一个很大的特点,就是主要面向批量写和查询进行优化,可以不支持更新、事务这些高级特性。一些商用的数据仓库分析系统,例如 Vertica,已经可以做到千亿级数据的秒级导入和秒级查询。

神策数据一直致力于帮助企业搭建数据仓库,实现数据的秒级响应,积累数据资产。本文主要通过神策数据在技术上的探索与实践,探讨如何利用现有的开源组件实现分析型数据仓库当中的读写分离。

为什么要进行读写分离

分析性数据仓库一般有如下几个特点:

  1. 面临着复杂的多维分析需求,能够进行任意维度的上卷下钻;
  2. 存储的数据维度一般较多,所以是宽表,而且一般比较稀疏;
  3. 数据量比较大,一次写入,多次查询。

针对这样特点,分析性数据库一般选择列存储数据格式,例如 Parquet 等。优点是对于统计分析效率很高,而且对于稀疏的宽表具有很高的存储压缩比。所以我们可以认为列存储格式是一种面向读进行优化的存储格式,我们称为 ReadOptimized Store(ROS)。

但是列存储格式也有一个缺点:这种格式的数据一旦生成,就很难进行修改,也很难往已有的数据文件当中插入新数据,只能增加新的数据文件。像 MySQL 这种传统的数据库,使用的行存储文件格式是一种适合修改和插入的存储格式,我们可以认为这种行存储格式是面向写进行优化的存储格式,称为 WriteOptimized Store(WOS)。

综上所诉,要实现一个可以秒级导入、秒级查询的分析型数据库,如果只选用 ROS,则很难支持大数据量的秒级导入。如果只选用 WOS,则很难实现任意维度的秒级查询,所以我们需要进行读写分离。

读写分离的实现原理

数据仓库当中需要同时存在 WOS 和 ROS,这样对于所有的写操作我们都生成 WOS 型文件;同时所有的读操作,则主要依赖于 ROS 文件,但也要查询少量的 WOS 文件。整体示意图如下:

图1 读写分离原理图

如图所示,WOS 文件需要定期转换为 ROS 文件,同时因为 ROS 在数据仓库当中一般是分为多个 Partition 存在,所以一个 WOS 可能转化为多个 ROS。转化的过程需要是原子操作,因为对上层查询引擎来说,同一时刻,同样的数据只能有一份。

开源方案的操作

前面简单介绍了读写分离方案的原理,具体的工程实践过程中,神策数据的工程师还面临着很多方案的选择和实践难点。下面简单介绍一下神策数据在搭建数据仓库的实践中啃过的“硬骨头”。

ROS 的选择比较简单,我们的工程师选择了 Parquet+ Impala 的查询方案,同时结合我们的业务特点做了很多代码级别的优化。(相关链接:付力力: 基于Impala构建实时用户行为分析引擎)WOS 的选择可能会比较多,我们可以选择常用的 HDFS 行存储文件格式,例如 TextFile、SequenceFile、Avro 等。

以 SequenceFile 为例,我们在定义自己的 Impala 表的时候,可以指定一个特殊的 Partition 文件的存储格式为 SequenceFile,同时其它的 Partition 作为正常的按照日期 Partition 的数据,指定格式为 Parquet,这种方式的优势体现在始终只有一个表。

后来基于查询效率和未来架构升级方面的考虑,我们最终选择了 Kudu 作为 WOS,架构实现示意图如下:

图2 读写分离的实现图

如图所示,我们会建立三张物理表,其中两张 Kudu 表作为 WOS,一张 Parquet 表作为 ROS。所有的写操作都会写入到 Ingesting 状态的 Kudu 表中,当 Ingesting 表写到一定大小之后,会自动转换为 Staging 状态。

这时我们一方面生成一张新的 Kudu 表作为 Ingesting 表,另一方面开始 WOS 到 ROS 的转换,通过一个叫做 Mover 的任务执行这个操作。将 Staging 状态的 Kudu 表中的数据全部转换到对应 Partition 的 Parquet 表当中。

Staging 状态的表转换完成且 Ingesting 状态的表写满时,会触发一个切表操作,需要更新元数据,告诉 Impala 使用新的数据进行查询,整个切表的操作是原子的。而且已经转化的 Staging 表还需要保留一段时间,避免切表之前发起的查询操作没有及时执行完成。

对于查询请求来说我们会建立一个包含 Staging 表、Ingesting 表和 ROS 表的虚拟表,即一个 View。用户的查询始终指向一个 View,但是下面的物理表会经常发生变化。这样就兼顾查询数据的不断更新及查询性能的优化两方面了。

在实现的过程中还有很多具体的工作,例如如何对表进行加列操作,保证各个表的结构一致;Parquet 表中碎文件较多影响查询效率,如何定期合并等。限于篇幅,这里不再具体介绍。神策数据最终的技术架构如下图:

图3 神策数据技术架构图

综上所述,神策数据为了实现数据驱动,在数据仓库的读写效率方面做了比较深入的探索,也参考了众多优秀的开源项目,做了适配产品的优化,累计十万行代码以上,大数据行业技术才是企业的核心竞争力,也希望大家在技术和业务层面进行开放性的探讨。

原文发布于微信公众号 - CSDN技术头条(CSDN_Tech)

原文发表时间:2017-11-27

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏知晓程序

如何删除小程序缓存 / 小程序列表能同步吗 / 追剧小程序推荐 | 小程序问答 #11

不知道有多少人在用微信谈工作?每次向对方用纯文字介绍自己的时候,都觉得低效又不美观。

1273
来自专栏hadoop学习

hadoop商业版本选择对比

记得刚接触到hadoop的时候跟大部分人一样都会抱怨hadoop的安装部署问题,对于一个新手来说这这的是个头疼的问题,可能需要花费一整天的时间才能把分布式环境安...

1.1K2
来自专栏程序员互动联盟

【编程工具】eclipse

★ 编程工具 ★ Eclipse 是一个开放源代码的、基于Java的可扩展开发平台。就其本身而言,它只是一个框架和一组服务,用于通过插件组件构建开发环境。幸...

3124
来自专栏华仔的技术笔记

开源项目README目录规范

5317
来自专栏云加头条

韩伟:解谜腾讯游戏海量服务架构

网络游戏和其他互联网服务一样,需要面对承载海量用户的压力,同时还需要满足游戏所要求的低延迟、业务逻辑高复杂度的特性。腾讯游戏研发部资深架构师韩伟为大家带来了“解...

5519
来自专栏FreeBuf

渗透网络投票系统解析投票骗局

今天没加班确实无聊,晚上女朋友在研究投票,看了一眼感觉十有八九是骗局。自从上次研究投票后身边一大堆找刷票的,也尝试了几种系统,感觉大部分都有漏洞或是bug(对于...

2918
来自专栏Youngxj

分享一款诗梦404炫酷单页面

2624
来自专栏美图数据技术团队

美图离线ETL实践

感谢阅读「美图数据技术团队」的第 13 篇文章,关注我们持续获取美图最新数据技术动态。

2590
来自专栏FreeBuf

挖洞经验 | 记一次针对Twitter(Periscope)API 的有趣挖洞经历

近期,我在Twitter的Periscope服务中发现了一个漏洞。这是一个CSRF(跨站请求伪造)漏洞,虽然这个漏洞并不算是高危漏洞,但是发现该漏洞的整个过程我...

3266
来自专栏北京马哥教育

Uread 自动化运维平台七大阶段实践

首先技术并没有好坏之分,只能说一种技术在特定场景会优于另一种技术。 首先uread优读( http://aiuread.com/ )作为一个还处于起步阶段的团队...

3554

扫码关注云+社区

领取腾讯云代金券