携程开源Redis多数据中心解决方案XPipe

Redis在携程内部得到了广泛的使用,根据客户端数据统计,整个携程全部Redis的读写请求在每秒200W,其中写请求约每秒10W,很多业务甚至会将Redis当成内存数据库使用。

这样,就对Redis多数据中心提出了很大的需求,一是为了提升可用性,解决数据中心DR(Disaster Recovery)问题;二是提升访问性能,每个数据中心可以读取当前数据中心的数据,无需跨机房读数据。在这样的需求下,XPipe应运而生 。

从实现的角度来说,XPipe主要需要解决三个方面的问题,一是数据复制,同时在复制的过程中保证数据的一致性;二是高可用,Xpipe本身的高可用和Redis系统的高可用;三是如何在机房异常时,进行DR切换。

下文将会从这三个方面对问题进行详细阐述。最后,将会对测试结果和系统在生产环境运行情况进行说明。

为了方便描述,后面的行文中用DC代表数据中心(Data Center)。

一、数据复制问题

多数据中心首先要解决的是数据复制问题,即数据如何从一个DC传输到另外一个DC,通常有如下方案:

客户端双写

从客户端的角度来解决问题,单个客户端双写两个DC的服务器。初看没有什么问题。但是深入看下去,如果写入一个IDC成功,另外一个IDC失败,那数据可能会不一致,为了保证一致,可能需要先写入一个队列,然后再将队列的数据发送到两个IDC。如果队列是本地队列,那当前服务器挂掉,数据可能会丢失;如果队列是远程队列,又给整体的方案带来了很大的复杂度。

目前的应用一般都是集群部署,会有多个客户端同时操作。在多个客户端的前提下,又带来了新的问题。比如两个客户端ClientA和ClientB:

ClientA: set key value1 ClientB: set key value2

由于两个客户端独立操作,到达服务器的顺序不可控,所以可能会导致两个DC的服务器对于同一个key,value不一致,如下:

Server1: set key value1; set key value2; Server2: set key value2; set key value1;

在Server1,最终值为value2,在Server2,最终值为value1。

服务器代理

proxy模式解决了多客户端写可能会导致数据不一致的问题。proxy类似于一个client,和单个client双写的问题类似,需要一个数据队列保数据一致性。

为了提升系统的利用率,单个proxy往往需要代理多个Redis server,如果proxy出问题,会导致大面积的系统故障。这样,就对系统的性能和可用性提出了极大的挑战,带来实现的复杂度。

此外,在特殊的情况下,仍然会可能带来数据的不一致,比如value和时间相关,或者是随机数,两个Redis服务器所在系统的不一致带来了数据的不一致。

考虑到以上情况,为了解决复制问题,我们决定采用伪slave的方案,即实现Redis协议,伪装成为Redis slave,让Redis master推送数据至伪slave。这个伪slave,我们把它称为keeper,如下图所示:

有了keeper之后,多数据中心之间的数据传输,可以通过keeper进行。keeper将Redis日志数据缓存到磁盘,这样,可以缓存大量的日志数据(Redis将数据缓存到内存ring buffer,容量有限),当数据中心之间的网络出现较长时间异常时仍然可以续传日志数据。

Redis协议不可更改,而keeper之间的数据传输协议却可以自定义。这样就可以进行压缩,以提升系统性能,节约传输成本;多个机房之间的数据传输往往需要通过公网进行,这样数据的安全性变得极为重要,keeper之间的数据传输也可以加密,提升安全性。

二、高可用

任何系统都可能会挂掉,如果keeper挂掉,多数据中心之间的数据传输可能会中断,为了解决这个问题,需要保证keeper的高可用。我们的方案中,keeper有主备两个节点,备节点实时从主节点复制数据,当主节点挂掉后,备节点会被提升为主节点,代替主节点进行服务。

提升的操作需要通过第三方节点进行,我们把它称之为MetaServer,主要负责keeper状态的转化以及机房内部元信息的存储。同时MetaServer也要做到高可用:每个MetaServer负责特定的Redis集群,当有MetaServer节点挂掉时,其负责的Redis集群将由其它节点接替;如果整个集群中有新的节点接入,则会自动进行一次负载均衡,将部分集群移交到此新节点。

Redis也可能会挂,Redis本身提供哨兵(Sentinel)机制保证集群的高可用。但是在Redis4.0版本之前,提升新的master后,其它节点连到此节点后都会进行全量同步,全量同步时,slave会处于不可用状态;master将会导出rdb,降低master的可用性;同时由于集群中有大量数据(RDB)传输,将会导致整体系统的不稳定。

截止当前文章书写之时,4.0仍然没有发布release版本,而且携程内部使用的Redis版本为2.8.19,如果升到4.0,版本跨度太大,基于此,我们在Redis3.0.7的版本基础上进行优化,实现了psync2.0协议,实现了增量同步。

下面是Redis作者对协议的介绍:https://gist.github.com/antirez/ae068f95c0d084891305。

三、DR切换

DR切换分为两种可能,一种是机房真的挂了或者出异常,需要进行切换,另外一种是机房仍然健康,但是由于演练、业务要求等原因仍然需要切换到另外的机房。XPipe处理机房切换的流程如下:

  • 检查是否可以进行DR切换
  • 类似于2PC协议,首先进行prepare,保证流程能顺利进行。
  • 原主机房master禁止写入
  • 此步骤,保证在迁移的过程中,只有一个master,解决在迁移过程中可能存在的数据丢失情况。
  • 提升新主机房master
  • 其它机房向新主机房同步

当然了,即使做了检查,也无法绝对保证整个迁移过程肯定能够成功,为此,我们提供回滚和重试功能。回滚功能可以回滚到初始的状态,重试功能可以在DBA人工介入的前提下,修复异常条件,继续进行切换。

根据以上分析,XPipe系统的整体架构如下所示:

Console用来管理多机房的元信息数据,同时提供用户界面,供用户进行配置和DR切换等操作。Keeper负责缓存Redis操作日志,并对跨机房传输进行压缩、加密等处理。Meta Server管理单机房内的所有keeper状态,并对异常状态进行纠正。

四、测试数据

我们关注的重点在于增加keeper后,平均延时的增加。测试方式如下图所示。从client发送数据至master,并且slave通过keyspace notification的方式通知到client,整个测试延时时间为t1+t2+t3。

首先我们测试Redis master直接复制到slave的延时,为0.2ms。然后在master和slave之间增加一层keeper,整体延时增加0.1ms,到0.3ms。相较于多个DC之间几毫秒,几十毫秒的延时,增加一层keeper带来的延时是完全没问题的。

在携程生产环境进行了测试,生产环境两个机房之间的ping RTT约为0.61ms,经过跨数据中心的两层keeper后,测试得到的平均延时约为0.8ms,延时99.9线为2ms。

综上所述:XPipe主要解决Redis多数据中心数据同步以及DR切换问题,同时,由于XPipe增强后的Redis版本优化了psync协议,会极大的提升Redis集群的稳定性。

同时,整个系统已经开源,欢迎大家一起参与优化整个系统:

XPipe: https://github.com/ctripcorp/x-pipe

XRedis(在Redis3.0.7版本上进行增强的版本):

https://github.com/ctripcorp/redis

原文发布于微信公众号 - CSDN技术头条(CSDN_Tech)

原文发表时间:2017-04-26

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏aCloudDeveloper

vhost:一种 virtio 高性能的后端驱动实现

什么是 vhost vhost 是 virtio 的一种后端实现方案,在 virtio 简介中,我们已经提到 virtio 是一种半虚拟化的实现方案,需要虚拟机...

1K60
来自专栏Spark学习技巧

HBase高可用集群运维实践

随着越来越多的业务选择HBase作为存储引擎,对HBase的可用性要求也越来越高,对于HBase的运维也提出了新的挑战。目前运维集群超过30+,而且接入的业务类...

46950
来自专栏企鹅号快讯

左手用R右手Python系列——多进程/线程数据抓取与网页请求

这一篇涉及到如何在网页请求环节使用多进程任务处理功能,因为网页请求涉及到两个重要问题:一是多进程的并发操作会面临更大的反爬风险,所以面临更严峻的反爬风险,二是抓...

25760
来自专栏开源优测

有那么几张图给大家看看

7910
来自专栏

基于JMS的数据交换既数据互操作平台的解决方案

为解决应用系统间数据和信息的互通、互用,建立一个通用的、分布式的数据集成平台,用以解决异构数据平台数据交流和沟通的问题。

61740
来自专栏Python研发

用pycharm提交代码,冲突之后文件丢失找回方法

1: 更新代码时, 监测到本地代码改变,需要和合并,重启之后才可以, 选择No同时,代码会被冲掉,新增加的文件也会被冲掉, 但是pycharm有一个文件历史记忆...

9140

使用Node.js构建API网关

当微服务架构中的服务被外部的客户端访问时,可以共享有关身份验证和传输的一些常见请求。API网关提供了一个共享层去处理服务协议之间的差异,同时满足特定客户端(像P...

44990
来自专栏匠心独运的博客

过来人的经验,谈谈一致性处理方案—分布式事务(DTS)

传统事务是使用数据库自身的事务属性(ACID),而数据库自身的事务属性是局限于当前实例,不能实现跨库。而对于大型分布式/微服务集群系统中,不仅存在着跨库的事务,...

44940
来自专栏Java编程技术

分布式事务- 三阶段协议

前面我们介绍了为解决分布式事务而提出来的的二阶段协议,本文首先来讲解二阶段的不足,然后阐述三阶段协议,三阶段协议也是一个标准的协议,也并没有说具体如何实现。

7920
来自专栏大葡萄元元

开发一款app从PHP到API接口

答:不可以,因为PHP是脚本语言,是负责完成 B/S架构 或 C/S架构 的S部分,即:服务端的开发。(别去纠结 GTK、WinBinder)

54810

扫码关注云+社区

领取腾讯云代金券