专栏首页钱塘大数据钱塘旁瞻 | 得大数据者得新工业革命先机

钱塘旁瞻 | 得大数据者得新工业革命先机

数据无限多时,就接近真实世界的本原。人类征服世界的前提是认识世界,既然借助大数据已经无限接近了真实世界,也就不必画蛇添足了,还是保持真实数据原貌最好,而且,认识世界的能力越强,人类征服世界和改造世界的能力也越强。

今年1月下旬在瑞士小镇举行的达沃斯年会,主题“掌控第四次工业革命”,主要讨论第四次工业革命将如何改变人类生产、分配和消费模式,如何应对由此带来的挑战。世界精英如此心仪新工业革命,盖因世界经济遇到了瓶颈,人们急切期望从新工业革命中找到突破口,找到人类可持续发展的钥匙。而要理解新工业革命,先得弄清大数据革命。

一般认为,大数据的数量级是在“太字节”即2的40次方以上,一般软件人员难以收集、存储、管理和分析的数据,而且这种认定还是相对的,随着科技进步,“大”的认定还会不断变化。但仅仅因为“大”而称之为大数据,风靡全球的大数据革命就没有太大意义了。

在小数据时代,我们只能有选择性采集抽样数据、局部数据和片面数据,有时甚至在无法获得实证时纯粹靠经验、理论、假设和价值观去发现未知领域的规律。结果只能是对真实世界的抽象归纳与推理,这就不可避免包含了人的心理和主观因素。同时,由于样本的局部性,时间非全天候性,归纳推理中的主客观偏差,有时可能出现“蝴蝶效应”,差之毫厘,谬以千里。

大数据的真正意义在于:通过传感器,实现真实世界的全方位连接,得到全方位实时数据,交换、整合和云计算,逼近真实世界。

大数据的真正意义在于:通过传感器,实现真实世界的全方位连接,得到全方位实时数据,交换、整合和云计算,逼近真实世界。

小数据追求“小”、“精”、“优”;大数据追求的是“多”、“杂”、“更优”。小数据时代,受科技水平的限制,只能依据随机样本,大数据则要求所有数据,在小数据时代只有5%的数据符合样本结构化要求,剩下的95%数据都被排斥在外了。大数据则良莠不拒,不求随机样本,而是全体数据;不求精确性,而是混杂性。小数据探求因果关系,即知道“为什么”,以便归纳推理和预测;而大数据只知道相关关系,不必知道因果关系,只要知道“是什么”不必知道“为什么”。

小数据追求精确、完美,往往导致不精确、不完美;大数据不求精确、不求完美,反而导致了观测客观世界的更精确、更完美。

如2009年谷歌通过大数据分析准确地得出什么地方发现了H1N1禽流感,而且判断非常及时,比美国疾控中心的判断结论要早一两周。美国安大略理工学院卡罗琳·麦格雷戈博士利用软件预测早产儿的病情,不仅比专业医生及时,而且一些病状,医生不能发现,而计算机能发现。

这些人都没有医疗方面的专业背景。这样的例子在大数据时代还有很多。正如“大数据时代的预言家”,牛津大学教授维多克·迈尔-舍恩伯格所言:“在不久的将来,世界许多依靠人类判断力的领域都会被计算机系统所改变甚至取代。”这看似是一个矛盾的命题,其实是一个方法论上的革命,即“大数据革命”。

明代著名思想家洪应明说过:“文章极处无奇巧,人品极处只本然。”一个人写文章写到登峰造极的境界时,其实并没有什么写作艺术可言,只是把内心的真实感受真实地表现出来,让读者从内心产生共鸣。一个人的品德修养达到炉火纯青的境界时,就能“随心所欲不逾矩”,让人回归到纯真朴实的本然之性而已。

大数据革命与此异曲同工:“工业革命无奇巧,数据大时只本然”。数据无限多时,就接近真实世界的本原。人类征服世界的前提是认识世界,既然借助大数据已经无限接近了真实世界,也就不必画蛇添足了,还是保持真实数据原貌最好,而且,认识世界的能力越强,人类征服世界和改造世界的能力也越强。

大数据“多”、“快”“好”“省”的优点奠定了新工业革命的基石。“数据多”,随着科技水平的进一步发展,大数据将无限逼近真实世界。“速度快”,全天候随时实现信息交换,没有时滞。“效果好”,大数据增加了人类的“观测”能力。美国麻省理工学院布伦乔尔森将大数据称之为人类社会行为观测的“显微镜”,就像望远镜让我们能洞察遥远的星河,显微镜让我们观察微小的细胞一样,大数据将帮助我们完成在通常的眼光下无法完成的工作。

新工业革命,本质上是智能革命,而智能革命的基础是信息化,大数据是根本。没有大数据对客观事物全面、快速、真实、准确的信息反馈,任何智能设备都不可能实现真正的智能。

因此,西方学者将即将来临的新工业革命也称之“后信息时代的革命”,归根到底,这是“大数据的革命”。以至于知名信息专家涂子沛说:“数据可以治国,也可以强国”,“得数据者得天下”。借用涂子沛的这句话,我们还可以说:“数据可以治业,数据可以兴业,得大数据者将占据新工业革命之先机!”

本文分享自微信公众号 - 钱塘大数据(qtbigdata)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2016-06-27

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 发展大数据不要一味追求数据规模大,要“应用为先”

    作者:李国杰 ? 中国信息化百人会学术委员、中国工程院院士李国杰认为,目前大数据技术还不成熟,面对海量、异构、动态变化的数据,传统的数据处理和分析技术难以应对...

    钱塘数据
  • 中润普达—大数据和人工智能产业发展,离不开中文认知技术的突破

    作者:中润普达 中文语义识别技术的突破将推动人工智能产业化,从而形成可持续的大数据生态圈。 11月24日在北京召开的“2017互联网+智慧中国年会”上,中润普...

    钱塘数据
  • 【大咖说】发展大数据不要一味追求数据规模大,要“应用为先”

    导读:中国信息化百人会学术委员、中国工程院院士李国杰认为,目前大数据技术还不成熟,面对海量、异构、动态变化的数据,传统的数据处理和分析技术难以应对,现有的数据处...

    钱塘数据
  • 大数据时代,各个行业CIO们怎么看?

      近日来,有幸和国内不同行业的CIO(医疗、教育、互联网、金融等)交流了大数据的看法,听了听他们一线用户对于大数据的理解,总体来看他们对于大数据本身充满了积...

    腾讯研究院
  • 基于深度神经网络的风电场超短期功率预测系统【数据故事计划最佳学术奖】

    能源是人类社会和经济发展的基础,快速的工业发展和人口的增长导致了能源的过度开发和使用,使得气候变化问题和能源危机成为了全球性的问题。而风力发电技术因为具有良好的...

    数据派THU
  • 大咖 | 舍恩伯格:相比“新石油”,大数据更应是削弱资本的“润滑脂”

    新时代的曙光已经照耀在每个人身上:在今天的数据时代,数据的全面收集与分析,为我们提供了一个前所未有的看待现实的新视角。对整个世界的这种全新认识,无疑会让人类做出...

    大数据文摘
  • 中科点击:大数据解决方案重在应用场景挖掘

    互联网移动互联网的高速发展,数据信息的爆炸式增长,将我们带到一个全新的大数据时代,一时间,“大数据”变成一个高大上的词汇,围绕“大数据”衍生出来的东西也越来越多...

    拼命三郎
  • 盘点 | 10大行业大数据应用痛点及解决策略

    虽然了解大数据的价值仍然是一个挑战,但其他实践中的挑战包括资金投入和投资回报率以及相关技能仍然是大数据行业排名前列。Gartner调查显示,75%以上的公司正在...

    华章科技
  • 转转大数据平台从 0 到 1 演进与实践

    孙玄@奈学教育
  • 在大数据时代,每家公司都要有大数据部门吗?

    <数据猿导读> 在大数据时代,每家公司都要有自己的大数据部门吗? 结论也不能下的太武断。如果这个问题换做是:在电气时代,每家公司都要有个发电厂吗?是不是会更好回...

    数据猿

扫码关注云+社区

领取腾讯云代金券