Python验证码识别:利用pytesser识别简单图形验证码

来源: j_hao104 my.oschina.net/jhao104/blog/647326

一、探讨

识别图形验证码可以说是做爬虫的必修课,涉及到计算机图形学,机器学习,机器视觉,人工智能等等高深领域……

简单地说,计算机图形学的主要研究内容就是研究如何在计算机中表示图形、以及利用计算机进行图形的计算、处理和显示的相关原理与算法。图形通常由点、线、面、体等几何元素和灰度、色彩、线型、线宽等非几何属性组成。计算机涉及到的几何图形处理一般有 2维到n维图形处理,边界区分,面积计算,体积计算,扭曲变形校正。对于颜色则有色彩空间的计算与转换,图形上色,阴影,色差处理等等。

在破解验证码中需要用到的知识一般是 像素,线,面等基本2维图形元素的处理和色差分析。常见工具为:

  • 支持向量机(SVM)
  • OpenCV
  • 图像处理软件(Photoshop,Gimp…)
  • Python Image Library

二、PIL安装

PIL: Python Imaging Library, 是Python平台的图像处理标准库,功能非常强大。

在Debian/Ubantu Linux下直接通过apt安装:

$sudo apt-get install python-imaging

Max和其他版本的Linux可以直接使用easy_install或pip安装,安装前需要把编译环境装好:

$ sudo easy_install PIL

Windos平台可以直接去PIL官网下载exe安装包。http://pythonware.com/products/pil/

注:官网提供的安装包是32位的,63位系统请前往这里 http://www.lfd.uci.edu/~gohlke/pythonlibs/#pillow 下载替代包pillow。

三、一般思路

验证码识别的一般思路为:

1、图片降噪

2、图片切割

3、图像文本输出

3.1 图片降噪

所谓降噪就是把不需要的信息通通去除,比如背景,干扰线,干扰像素等等,只剩下需要识别的文字,让图片变成2进制点阵最好。

对于彩色背景的验证码:每个像素都可以放在一个5维的空间里,这5个维度分别是,X,Y,R,G,B,也就是像素的坐标和颜色,在计算机图形学中,有很多种色彩空间,最常用的比如RGB,印刷用的CYMK,还有比较少见的HSL或者HSV,每种色彩空间的维度都不一样,但是可以通过公式互相转换。在RGB空间中不好区分颜色,可以把色彩空间转换为HSV或HSL。色彩空间参见 http://baike.baidu.com/view/3427413.htm

验证码图片7039.jpg:

1、导入Image包,打开图片:

from PIL import Image im = Image.open('7039.jpg')

2、把彩色图像转化为灰度图像。RBG转化到HSI彩色空间,采用I分量:

imgry = im.convert('L') imgry.show()

灰度看起来是这样的:

3、二值化处理

二值化是图像分割的一种常用方法。在二值化图象的时候把大于某个临界灰度值的像素灰度设为灰度极大值,把小于这个值的像素灰度设为灰度极小值,从而实现二值化(一般设置为0-1)。根据阈值选取的不同,二值化的算法分为固定阈值和自适应阈值,这里选用比较简单的固定阈值。

把像素点大于阈值的设置,1,小于阈值的设置为0。生成一张查找表,再调用point()进行映射。

threshold = 140 table = [] for i in range(256): if i < threshold: table.append(0) else: table.append(1) out = imgry.point(table, '1') out.show()

处理结果看起来是这样的:

3.2 图片切割

识别验证码的重点和难点就在于能否成功分割字符,对于颜色相同又完全粘连的字符,比如google的验证码,目前是没法做到5%以上的识别率的。不过google的验证码基本上人类也只有30%的识别率。本文使用的验证码例子比较容易识别。可以不用切割,有关图片切割的方法参见这篇博客:http://www.cnblogs.com/apexchu/p/4231041.html

四、利用pytesser模块实现识别

pytesser是谷歌OCR开源项目的一个模块,在python中导入这个模块即可将图片中的文字转换成文本。

链接:https://code.google.com/p/pytesser/

pytesser 调用了 tesseract。在python中调用pytesser模块,pytesser又用tesseract识别图片中的文字。

4.1 pytesser安装

  • 如果没有安装PIL,请到这里下载安装:http://www.pythonware.com/products/pil/
  • 安装pytesser,下载地址:http://code.google.com/p/pytesser/ ,下载后直接将其解压到项目代码下,或者解压到python安装目录的Libsite-packages下,并将其添加到path环境变量中,不然在导入模块时会出错。
  • 下载Tesseract OCR engine:http://code.google.com/p/tesseract-ocr/ ,下载后解压,找到tessdata文件夹,用其替换掉pytesser解压后的tessdata文件夹即可。
  • 另外如果现在都是从PIL库中运入Image,没有使用Image模块,所以需要把pytesser.py中的import Image改为from PIL import Image, 其次还需要在pytesser文件夹中新建一个__init__.py的空文件。

ps:如果觉得后面两步比较麻烦,可以直接到云盘中下载 http://yun.baidu.com/s/1jHJvNiI ,操作如步骤2。

4.2 调用pytesser识别

pytesser提供了两种识别图片方法,通过image对象和图片地址,代码判断如下:

from PIL import Image from pytesser import pytesser image = Image.open('7039.jpg') print pytesser.image_file_to_string('7039.jpg') print pytesser.image_to_string(image)

同时pytesser还支持其他语言的识别,比如中文。具体参见:http://blog.csdn.net/hk_jh/article/details/8961449

觉得本文对你有帮助?请分享给更多人。

原文发布于微信公众号 - 程序员宝库(chengxuyuanbaoku)

原文发表时间:2018-02-12

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏ATYUN订阅号

Deep Photo Styletransfer的一种纯Tensorflow实现,教你如何转换图片风格

通过深度学习,一秒钟让你的照片高大上,这是康奈尔大学和 Adobe 的工程师合作的一个新项目,通过卷积神经网络把图片进行风格迁移。项目已开源,名字叫「Deep ...

5205
来自专栏人工智能LeadAI

使用Python+Tensorflow的CNN技术快速识别验证码

近年来,机器学习变得愈加火热,中国选手柯洁与AlphaGo的人机大战更是引起热议。目前,在图像识别和视觉分析研究中,卷积神经网络(CNN)技术的使用越来越多。T...

6646
来自专栏数据小魔方

气泡图(bubble)

今天跟大家分享的是气泡图! ▽▼▽ EXCEL制作的气泡图需要三个序列数据,除了通常必须的X轴、Y轴之外,还需要第三列数据,用来指定气泡面积大小。 ●●●●● ...

5285
来自专栏机器之心

GPU捉襟见肘还想训练大批量模型?谁说不可以

2018 年的大部分时间我都在试图训练神经网络时克服 GPU 极限。无论是在含有 1.5 亿个参数的语言模型(如 OpenAI 的大型生成预训练 Transfo...

3513
来自专栏深度学习入门与实践

【深度学习系列】PaddlePaddle可视化之VisualDL

  上篇文章我们讲了如何对模型进行可视化,用的keras手动绘图输出CNN训练的中途结果,本篇文章将讲述如何用PaddlePaddle新开源的VisualDL来...

4139
来自专栏数据小魔方

ggplot2双坐标轴的解决方案

本来没有打算写这一篇的,因为在一幅图表中使用双坐标轴确实不是一个很好地习惯,无论是信息传递的效率还是数据表达的准确性而言。 但是最近有好几个小伙伴儿跟我咨询关于...

4239
来自专栏素质云笔记

图像增强︱window7+opencv3.2+keras/theano简单应用(函数解读)

在服务器上安装opencv遇到跟CUDA8.0不适配的问题,于是不得不看看其他机器是否可以预装并使用。 . 一、python+opencv3.2安装 ope...

41610
来自专栏机器之心

资源 | 微软发布可变形卷积网络代码:可用于多种复杂视觉任务

选自Github 机器之心编译 编辑:吴攀 上个月,微软代季峰等研究者发布的一篇论文提出了一种可变形卷积网络,该研究「引入了两种新的模块来提高卷积神经网络(CN...

3556
来自专栏ATYUN订阅号

使用Python完成你的第一个学习项目

你是否想使用python进行机器学习但却难以入门? 在这篇教程中,你将用Python完成你的第一个机器学习项目。 在以下的教程中,你将学到: 下载并安装P...

73511
来自专栏大数据智能实战

基于tensorflow 1.0的图像叙事功能测试(model/im2txt)

作为多模态数据处理的经典,图像自动打标签(图像叙事功能)一直是一项非常前沿的技术,涉及到机器视觉,自然语言处理等模块。 幸运的是,谷歌基于tensorflow将...

6046

扫码关注云+社区

领取腾讯云代金券