首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >设计模式学习--面向对象的5条设计原则之Liskov替换原则--LSP

设计模式学习--面向对象的5条设计原则之Liskov替换原则--LSP

作者头像
hbbliyong
发布2018-03-05 16:41:14
6300
发布2018-03-05 16:41:14
举报
文章被收录于专栏:hbbliyonghbbliyong

一、LSP简介(LSP--Liskov Substitution Principle):

定义:如果对于类型S的每一个对象o1,都有一个类型T的对象o2,使对于任意用类型T定义的程序P,将o2替换为o1,P的行为保持不变,则称S为T的一个子类型。

子类型必须能够替换它的基类型。LSP又称里氏替换原则。

对于这个原则,通俗一些的理解就是,父类的方法都要在子类中实现或者重写。

二、举例说明:

对于依赖倒置原则,说的是父类不能依赖子类,它们都要依赖抽象类。这种依赖是我们实现代码扩展和运行期内绑定(多态)的基础。因为一旦类的使用者依赖某个具体的类,那么对该依赖的扩展就无从谈起;而依赖某个抽象类,则只要实现了该抽象类的子类,都可以被类的使用者使用,从而实现了系统的扩展。 但是,光有依赖倒置原则,并不一定就使我们的代码真正具有良好的扩展性和运行期内绑定。请看下面的代码:

public class Animal
{
    private string name;
    public Animal(string name)
    {
        this.name = name;
    }
    public void Description()
    {
        Console.WriteLine("This is a(an) " + name);
    }
}
//下面是它的子类猫类:
public class Cat : Animal
{
    public Cat(string name)
    {
 
    }
    public void Mew()
    {
        Console.WriteLine("The cat is saying like 'mew'");
    }
}
//下面是它的子类狗类:
public class Dog : Animal
{
    public Dog(string name)
    {
    }
    public void Bark()
    {
        Console.WriteLine("The dog is saying like 'bark'");
    }
}
//最后,我们来看客户端的调用:
public void DecriptionTheAnimal(Animal animal)
{
    if (typeof(animal) is Cat)
    {
        Cat cat = (Cat)animal;
        Cat.Decription();
        Cat.Mew();
    }
    else if (typeof(animal) is Dog)
    {
        Dog dog = (Dog)animal;
        Dog.Decription();
        Dog.Bark();
    }
}

通过上面的代码,我们可以看到虽然客户端的依赖是对抽象的依赖,但依然这个设计的扩展性不好,运行期绑定没有实现。 是什么原因呢?其实就是因为不满足里氏替换原则,子类如Cat有Mew()方法父类根本没有,Dog类有Bark()方法父类也没有,两个子类都不能替换父类。这样导致了系统的扩展性不好和没有实现运行期内绑定。

现在看来,一个系统或子系统要拥有良好的扩展性和实现运行期内绑定,有两个必要条件:第一是依赖倒置原则;第二是里氏替换原则。这两个原则缺一不可。

我们知道,在我们的大多数的模式中,我们都有一个共同的接口,然后子类和扩展类都去实现该接口。

下面是一段原始代码:

if(action.Equals(“add”))
{
  //do add action
}
else if(action.Equals(“view”))
{
  //do view action
}
else if(action.Equals(“delete”))
{
  //do delete action
}
else if(action.Equals(“modify”))
{
  //do modify action
}

我们首先想到的是把这些动作分离出来,就可能写出如下的代码:

public class AddAction
{
    public void add()
    {
        //do add action
    }
}
public class ViewAction
{
    public void view()
    {
        //do view action
    }
}
public class deleteAction
{
    public void delete()
    {
        //do delete action
    }
}
public class ModifyAction
{
    public void modify()
    {
        //do modify action
    }
}

我们可以看到,这样代码将各个行为独立出来,满足了单一职责原则,但这远远不够,因为它不满足依赖颠倒原则和里氏替换原则。 下面我们来看看命令模式对该问题的解决方法:

public interface Action
{
    public void doAction();
}
//然后是各个实现:
public class AddAction : Action
{
    public void doAction()
    {
        //do add action
    }
}
public class ViewAction : Action
{
    public void doAction()
    {
        //do view action
    }
}
public class deleteAction : Action
{
    public void doAction()
    {
        //do delete action
    }
}
public class ModifyAction : Action
{
    public void doAction()
    {
        //do modify action
    }
}
//这样,客户端的调用大概如下:
public void execute(Action action)
{
    action.doAction();
}

看,上面的客户端代码再也没有出现过typeof这样的语句,扩展性良好,也有了运行期内绑定的优点。

三、LSP优点:

1、保证系统或子系统有良好的扩展性。只有子类能够完全替换父类,才能保证系统或子系统在运行期内识别子类就可以了,因而使得系统或子系统有了良好的扩展性。 2、实现运行期内绑定,即保证了面向对象多态性的顺利进行。这节省了大量的代码重复或冗余。避免了类似instanceof这样的语句,或者getClass()这样的语句,这些语句是面向对象所忌讳的。 3、有利于实现契约式编程。契约式编程有利于系统的分析和设计,指我们在分析和设计的时候,定义好系统的接口,然后再编码的时候实现这些接口即可。在父类里定义好子类需要实现的功能,而子类只要实现这些功能即可。

四、使用LSP注意点:

1、此原则和OCP的作用有点类似,其实这些面向对象的基本原则就2条:1:面向接口编程,而不是面向实现;2:用组合而不主张用继承

2、LSP是保证OCP的重要原则 3、这些基本的原则在实现方法上也有个共同层次,就是使用中间接口层,以此来达到类对象的低偶合,也就是抽象偶合!

4、派生类的退化函数:派生类的某些函数退化(变得没有用处),Base的使用者不知道不能调用f,会导致替换违规。在派生类中存在退化函数并不总是表示违反了LSP,但是当存在这种情况时,应该引起注意。  5、从派生类抛出异常:如果在派生类的方法中添加了其基类不会抛出的异常。如果基类的使用者不期望这些异常,那么把他们添加到派生类的方法中就可以能会导致不可替换性。

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2013-08-19 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档