最长公共子序列与最长公共子串

0. 引言

最近鄙人面试百度,出了这道求解公子序列长度的算法题。故此总结一下,这是一个很典型的题目,希望对大家将来的面试中能起到学习的作用。

1. 问题描述

子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串

  • cnblogs
  • belong

比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与母串保持一致,我们将其称为公共子序列。最长公共子序列(Longest Common Subsequence,LCS),顾名思义,是指在所有的子序列中最长的那一个。子串是要求更严格的一种子序列,要求在母串中连续地出现。在上述例子的中,最长公共子序列为blog(cnblogs,belong),最长公共子串为lo(cnblogs, belong)。

2. 求解算法

对于母串X=<x1,x2,⋯,xm>, Y=<y1,y2,⋯,yn>,求LCS与最长公共子串。

暴力解法 假设 m<n, 对于母串X,我们可以暴力找出2的m次方个子序列,然后依次在母串Y中匹配,算法的时间复杂度会达到指数级O(n∗2的m次)。显然,暴力求解不太适用于此类问题。

动态规划 假设Z=<z1,z2,⋯,zk>是X与Y的LCS, 我们观察到 如果Xm=Yn,则Zk=Xm=Yn,有Zk−1是Xm−1与Yn−1的LCS; 如果Xm≠Yn,则Zk是Xm与Yn−1的LCS,或者是Xm−1与Yn的LCS。 因此,求解LCS的问题则变成递归求解的两个子问题。但是,上述的递归求解的办法中,重复的子问题多,效率低下。改进的办法——用空间换时间,用数组保存中间状态,方便后面的计算。这就是动态规划(DP)的核心思想了。

DP求解LCS 用二维数组c[i][j]记录串x1x2⋯xi与y1y2⋯yj的LCS长度,则可得到状态转移方程

public static int lcs(String str1, String str2) {
    int len1 = str1.length();
    int len2 = str2.length();
    int c[][] = new int[len1 + 1][len2 + 1];
    for (int i = 0; i <= len1; i++) {
        for (int j = 0; j <= len2; j++) {
            if (i == 0 || j == 0) {
                c[i][j] = 0;
            }
            else if (str1.charAt(i - 1) == str2.charAt(j - 1)) {
                c[i][j] = c[i - 1][j - 1] + 1;
            }
            else {
                c[i][j] = max(c[i - 1][j], c[i][j - 1]);
            }
        }
    }
    return c[len1][len2];
}

DP求解最长公共子串 前面提到了子串是一种特殊的子序列,因此同样可以用DP来解决。定义数组的存储含义对于后面推导转移方程显得尤为重要,糟糕的数组定义会导致异常繁杂的转移方程。考虑到子串的连续性,将二维数组c[i][j]用来记录具有这样特点的子串——结尾同时也为为串x1x2⋯xi与y1y2⋯yj的结尾——的长度。 得到转移方程:

最长公共子串的长度为 max(c[i,j]), i∈{1,⋯,m},j∈{1,⋯,n}。 代码实现

public static int lcs(String str1, String str2) {
    int len1 = str1.length();
    int len2 = str2.length();
    int result = 0;     //记录最长公共子串长度  
    int c[][] = new int[len1+1][len2+1];
    for (int i = 0; i <= len1; i++) {
        for( int j = 0; j <= len2; j++) {
            if(i == 0 || j == 0) {
                c[i][j] = 0;
            } else if (str1.charAt(i-1) == str2.charAt(j-1)) {
                c[i][j] = c[i-1][j-1] + 1;
                result = max(c[i][j], result);
            } else {
                c[i][j] = 0;
            }
        }
    }
    return result;
}  

原文发布于微信公众号 - 机器学习算法全栈工程师(Jeemy110)

原文发表时间:2017-07-26

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏mathor

二分查找与二分答案(4)

13510
来自专栏逸鹏说道

码农眼中的数学之~数学基础

1维直线、2维平面(长宽)、3维空间(长宽高 | xyz轴)、4维时空(xyz轴+时间轴)

983
来自专栏PPV课数据科学社区

用Python分析苹果公司股价数据

作者:酱油哥,清华程序猿、IT非主流 专栏地址: https://zhuanlan.zhihu.com/c_147297848 要点抢先看 1.csv数据的读...

3405
来自专栏数据结构与算法

1038 一元三次方程求解

1038 一元三次方程求解 2001年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 白银 Silver ...

2588
来自专栏数据结构与算法

P1141 01迷宫

题目描述 有一个仅由数字0与1组成的n×n格迷宫。若你位于一格0上,那么你可以移动到相邻4格中的某一格1上,同样若你位于一格1上,那么你可以移动到相邻4格中的某...

3426
来自专栏专注数据中心高性能网络技术研发

[LeetCode]Array主题系列{1,11,15,16,18,26,27,31,33,34题}

1.内容介绍 开一篇文章记录在leetcode中array主题下面的题目和自己的思考以及优化过程,具体内容层次按照{题目,分析,初解,初解结果,优化解,优化解结...

2826
来自专栏数据结构与算法

2017.7.21夏令营清北学堂解题报告

预计分数: 60+30+0=90=划水 实际分数: 90+30+20=140=rank5=雷蛇鼠标 一句话总结:今天该买彩票! T1: 题目描述 从前有一个?...

2606
来自专栏来自地球男人的部落格

NLTK之朴素贝叶斯分类器

由于学习需要,最近开始接触NLTK,使用最简单的Naive Bayes Classifier,但是写代码过程中各种错误和不顺,现将其记录于此。 之前并不知道分类...

1899
来自专栏Python中文社区

用Python分析苹果公司股价数据

专栏地址:https://zhuanlan.zhihu.com/c_147297848

792
来自专栏bboysoul

1476: C语言实验题――圆周率

输入:输入公式中的n值。 输出:输出圆周率,保留5位小数。 样例输入:1 样例输出:2.66667 考点:格里高里公式 代码:

602

扫描关注云+社区