普里姆(Prim)算法

普里姆(Prim)算法,和克鲁斯卡尔算法一样,是用来求加权连通图的最小生成树的算法。

基本思想

对于图G4而言,V是所有顶点的集合;现在,设置两个新的集合U和T,其中U用于存放G的最小生成树中的顶点,T存放G的最小生成树中的边。

从所有uЄU,vЄ(V-U) (V-U表示出去U的所有顶点)的边中选取权值最小的边(u, v),将顶点v加入集合U中,将边(u, v)加入集合T中,如此不断重复,直到U=V为止,最小生成树构造完毕,这时集合T中包含了最小生成树中的所有边。

普里姆算法图解

下面我们将以上面的G4图为例,来对普里姆算法进行演示(从第一个顶点A开始通过普里姆算法生成最小生成树)。

细分步骤如下:

步骤解释如下:

初始状态:V是所有顶点的集合,即V={A,B,C,D,E,F,G};U和T为空! 第1步:将顶点A加入到U中:此时,U={A}。 第2步:将顶点B加入到U中:上一步操作之后,U={A}, V-U={B,C,D,E,F,G};因此,边(A,B)的权值最小。将顶点B添加到U中:此时,U={A,B}。 第3步:将顶点F加入到U中:上一步操作之后,U={A,B}, V-U={C,D,E,F,G};因此,边(B,F)的权值最小。将顶点F添加到U中:此时,U={A,B,F}。 第4步:将顶点E加入到U中:上一步操作之后,U={A,B,F}, V-U={C,D,E,G};因此,边(F,E)的权值最小。将顶点E添加到U中: 此时,U={A,B,F,E}。 第5步:将顶点D加入到U中:上一步操作之后,U={A,B,F,E}, V-U={C,D,G};因此,(E,D)的权值最小。将顶点D添加到U中:此时,U={A,B,F,E,D}。 第6步:将顶点C加入到U中:上一步操作之后,U={A,B,F,E,D}, V-U={C,G};因此,边(D,C)的权值最小。将顶点C添加到U中: 此时,U={A,B,F,E,D,C}。 第7步:将顶点G加入到U中:上一步操作之后,U={A,B,F,E,D,C}, V-U={G};因此,边(F,G)的权值最小。将顶点G添加到U中:此时,U=V。

此时,最小生成树构造完成!它包括的顶点依次是:A B F E D C G。

普里姆算法图解

以"邻接矩阵"为例对普里姆算法进行说明

对于"邻接表"实现的图在后面会给出相应的源码。

1. 基本定义

// 邻接矩阵
typedef struct _graph
{
     char vexs[MAX];         // 顶点集合
    int vexnum;           // 顶点数
    int edgnum;           // 边数
    int matrix[MAX][MAX];     // 邻接矩阵
}Graph, *PGraph;
// 边的结构体
typedef struct _EdgeData
{
     char start;    // 边的起点
    char end;   // 边的终点
    int weight;  // 边的权重
}EData;

其中Graph是邻接矩阵对应的结构体。 vexs用于保存顶点,vexnum是顶点数,edgnum是边数;matrix则是用于保存矩阵信息的二维数组。例如,matrix[i][j]=1,则表示"顶点i(即vexs[i])"和"顶点j(即vexs[j])"是邻接点;matrix[i][j]=0,则表示它们不是邻接点。 EData是邻接矩阵边对应的结构体。

2. 普里姆算法

#include<stdio.h>
#include<stdlib.h>
#include<malloc.h>
#include<string.h>
#define MAX 100
#define INF (~(0x1<<31))
typedef struct Graph
{
    char vexs[MAX];
    int vexnum;
    int edgnum;
    int matrix[MAX][MAX];
} Graph,*PGraph;

typedef struct EdgeData
{
    char start;
    char end;
    int weight;
} EData;
static int get_position(Graph g,char ch)
{
    int i;
    for(i=0; i<g.vexnum; i++)
        if(g.vexs[i]==ch)
            return i;
    return -1;
}

Graph* create_graph()
{
    char vexs[]= {'A','B','C','D','E','F','G'};
    int matrix[][7]=
            {
                    {0,12,INF,INF,INF,16,14},
                    {12,0,10,INF,INF,7,INF},
                    {INF,10,0,3,5,6,INF},
                    {INF,INF,3,0,4,INF,INF},
                    {INF,INF,5,4,0,INF,8},
                    {16,7,6,INF,2,0,9},
                    {14,INF,INF,INF,8,9,0}
            };
    int vlen=sizeof(vexs)/sizeof(vexs[0]);
    int i,j;
    Graph *pG;
    if((pG=(Graph*)malloc(sizeof(Graph)))==NULL)
        return NULL;
    memset(pG,0,sizeof(pG));
    pG->vexnum=vlen;
    for(i=0; i<pG->vexnum; i++)
        pG->vexs[i]=vexs[i];
    for(i=0; i<pG->vexnum; i++)
        for(j=0; j<pG->vexnum; j++)
            pG->matrix[i][j]=matrix[i][j];
    for(i=0; i<pG->vexnum; i++)
    {
        for(j=0; j<pG->vexnum; j++)
        {
            if(i!=j&&pG->matrix[i][j]!=INF)
                pG->edgnum++;
        }
    }
    pG->edgnum/=2;
    return pG;
}
void print_graph(Graph G)
{
    int i,j;
    printf("Matrix Graph: \n");
    for(i=0; i<G.vexnum; i++)
    {
        for(j=0; j<G.vexnum; j++)
            printf("%10d ",G.matrix[i][j]);
        printf("\n");
    }
}

EData* get_edges(Graph G)
{
    EData *edges;
    edges=(EData*)malloc(G.edgnum*sizeof(EData));
    int i,j;
    int index=0;
    for(i=0; i<G.vexnum; i++)
    {
        for(j=i+1; j<G.vexnum; j++)
        {
            if(G.matrix[i][j]!=INF)
            {
                edges[index].start=G.vexs[i];
                edges[index].end=G.vexs[j];
                edges[index].weight=G.matrix[i][j];
                index++;
            }
        }
    }
    return edges;
}
void prim(Graph G,int start)
{
    int min,i,j,k,m,n,sum;
    int index=0;
    char prim[MAX];
    int weight[MAX];

    prim[index++]=G.vexs[start];

    for(i=0; i<G.vexnum; i++)
        weight[i]=G.matrix[start][i];
    weight[start]=0;

    for(i=0; i<G.vexnum; i++)
    {
        //i用来控制循环的次数,每次加入一个结点,但是因为start已经加入,所以当i为start是跳过
        if(start==i)
            continue;
        j=0;
        k=0;
        min=INF;
        for(k=0; k<G.vexnum; k++)
        {
            if(weight[k]&&weight[k]<min)
            {
                min=weight[k];
                j=k;
            }
        }
        sum+=min;
        prim[index++]=G.vexs[j];
        weight[j]=0;
        for(k=0; k<G.vexnum; k++)
        {
            if(weight[k]&&G.matrix[j][k]<weight[k])
                weight[k]=G.matrix[j][k];
        }
    }
    // 计算最小生成树的权值
    sum = 0;
    for (i = 1; i < index; i++)
    {
        min = INF;
        // 获取prims[i]在G中的位置
        n = get_position(G, prim[i]);
        // 在vexs[0...i]中,找出到j的权值最小的顶点。
        for (j = 0; j < i; j++)
        {
            m = get_position(G, prim[j]);
            if (G.matrix[m][n]<min)
                min = G.matrix[m][n];
        }
        sum += min;
    }
    printf("PRIM(%c)=%d: ", G.vexs[start], sum);
    for (i = 0; i < index; i++)
        printf("%c ", prim[i]);
    printf("\n");
}
int main()
{
    Graph *pG;
    pG=create_graph();
    print_graph(*pG);
    prim(*pG,0);
}

不知道你是否真的理解了普里姆算法,

如果还有疑问,欢迎你在留言板处提问哦!

推荐阅读

  1. Sample K算法
  2. AdaBoost 算法原理及推导

原文发布于微信公众号 - 机器学习算法全栈工程师(Jeemy110)

原文发表时间:2017-08-16

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏蜉蝣禅修之道

Levenshtein distance最小编辑距离算法实现

5374
来自专栏算法channel

图算法|Dijkstra最短路径算法

01 — 单源最短路径 首先解释什么是单源最短路径,所谓单源最短路径就是指定一个出发顶点,计算从该源点出发到其他所有顶点的最短路径。如下图所示,如果源点设为A,...

4585
来自专栏崔庆才的专栏

TensorFlow RNN Cell源码解析

本文介绍下 RNN 及几种变种的结构和对应的 TensorFlow 源码实现,另外通过简单的实例来实现 TensorFlow RNN 相关类的调用。 RNN R...

4845
来自专栏章鱼的慢慢技术路

《算法图解》第八章_贪婪算法_集合覆盖问题

3786
来自专栏从流域到海域

普利姆(prim)算法和克鲁斯卡尔(kruskal)算法

连通网的最小生成树算法: 1.普里姆算法——”加点法”。 假设N=(V,{E})是连通网,TE为最小生成树的边集合。 (1)初始U={u0}(...

2127
来自专栏小樱的经验随笔

容斥原理

容斥原理 对容斥原理的描述 容斥原理是一种重要的组合数学方法,可以让你求解任意大小的集合,或者计算复合事件的概率。 描述 容斥原理可以描述如下: 要计算几个...

3937
来自专栏Python小屋

详解Python科学计算扩展库numpy中的矩阵运算(1)

首先解答上一篇文章中使用with关键字让你的Python代码更加Pythonic最后的习题,该题答案是False,原因在于内置函数sorted()的参数reve...

2784
来自专栏机器学习算法工程师

经典算法题之Maximal Square

作者:叶 虎 编辑:邓高锦 Maximal Square是道非常有意思的算法题。它是一个典型的动态规划问题,同时也是2017京东面试题,2016华为机考题...

4069
来自专栏数据结构与算法

P1378 油滴扩展

题目描述 在一个长方形框子里,最多有N(0≤N≤6)个相异的点,在其中任何一个点上放一个很小的油滴,那么这个油滴会一直扩展,直到接触到其他油滴或者框子的边界。必...

2718
来自专栏小樱的经验随笔

Wannafly模拟赛 A.矩阵(二分答案+hash)

矩阵 时间限制:1秒 空间限制:131072K 题目描述 给出一个n * m的矩阵。让你从中发现一个最大的正方形。使得这样子的正方形在矩阵中出现了至少两次。输出...

2865

扫码关注云+社区