一步步教你理解LSTM

作者:王千发

编辑:田 旭

什么是LSTM

1

LSTM全名是Long Short-Term Memory,长短时记忆网络,可以用来处理时序数据,在自然语言处理和语音识别等领域应用广泛。和原始的循环神经网络RNN相比,LSTM解决了RNN的梯度消失问题,可以处理长序列数据,成为当前最流行的RNN变体。

LSTM应用举例

2

假设我们的模型的输入是依次输入一句话的每个单词,我们需要对单词做分类,比如有两句话:(1)arrive Beijing on November 2nd,这里的Beijing是目的地;(2)leave Beijing on November 2nd,这里的Beijing是出发地。如果用普通的神经网络,输入是'Beijing',那么输出一定就是确定的,但事实上我们希望在'Beijing'前面是'arrive'时,'Beijing'被识别为目的地,在'Beijing'前面时'leave'时,'Beijing'被识别为出发地。这里LSTM就会派上用场,因为LSTM可以记住历史信息,在读到'Beijing'时,LSTM还知道在前面是'arrive'还是'leave',根据历史信息来做出不同的判断,即使输入是相同的,输出也会不同。

LSTM结构剖析

3

普通的神经元是一个输入,一个输出,如图所示:

对于神经元h1来讲,输入就是x1,输出就是y1,LSTM做的就是把普通的神经元,替换成LSTM的单元。

从图中可以看到LSTM有四个输入,分别是input(模型输入),forget gate(遗忘门),input gate(输入门),以及output gate(输出门)。因此相比普通的神经网络,LSTM的参数量是它们的4倍。这3个门信号都是处于0~1之间的实数,1代表完全打开,0代表关闭。遗忘门:决定了前一时刻中memory中的是否会被记住,当遗忘门打开时,前一刻的记忆会被保留,当遗忘门关闭时,前一刻的记忆就会被清空。输入门:决定当前的输入有多少被保留下来,因为在序列输入中,并不是每个时刻的输入的信息都是同等重要的,当输入完全没有用时,输入门关闭,也就是此时刻的输入信息被丢弃了。输出门:决定当前memroy的信息有多少会被立即输出,输出门打开时,会被全部输出,当输出门关闭时,当前memory中的信息不会被输出。

LSTM公式推导

4

有了上面的知识,再来推导LSTM的公式就很简单了,图中

代表遗忘门,

代表输入门,

代表输出门。C是memroy cell,存储记忆信息。

代表上一时刻的记忆信息,

代表当前时刻的记忆信息,h是LSTM单元的输出,

是前一刻的输出。

遗忘门计算:

这里的

是把两个向量拼接起来的意思,用sigmoid函数主要原因是得到有个0~1之间的数,作为遗忘门的控制信号。

输入门计算:

当前输入:

当前时刻的记忆信息的更新:

从这个公式可以看出,前一刻的记忆信息

通过遗忘门

,当前时刻的输入

通过输入门

,加起来更新当前的记忆信息

输入门计算:

LSTM的输出,是由输出门和当前记忆信息共同决定的:

这样我们就明白了LSTM的前向计算过程。有了LSTM前向传播算法,推导反向传播算法就很容易了, 通过梯度下降法迭代更新我们所有的参数,关键点在于计算所有参数基于损失函数的偏导数,这里就不细讲了。

小结

5

LSTM虽然结构复杂,但是只要理顺了里面的各个部分和之间的关系,是不难掌握的。在实际使用中,可以借助算法库如Keras,PyTorch等来搞定,但是仍然需要理解LSTM的模型结构。

参考文献

  1. https://www.youtube.com/watch?v=rTqmWlnwz_0&index=35&list=PLJV_el3uVTsPy9oCRY30oBPNLCo89yu49
  2. https://zybuluo.com/hanbingtao/note/581764
  3. http://www.cnblogs.com/pinard/p/6519110.html
  4. http://blog.echen.me/2017/05/30/exploring-lstms/

原文发布于微信公众号 - 机器学习算法全栈工程师(Jeemy110)

原文发表时间:2017-12-29

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏CDA数据分析师

资源 | 一个Python特征选择工具,助力实现高效机器学习

项目地址:https://github.com/WillKoehrsen/feature-selector

1000
来自专栏Python小屋

Python扩展库scipy.misc中图像转换成pillow图像

众所周知,在数字图像处理领域中有很多基准测试图像,这些图像用来作为科研人员PK自己的算法时的参考,给大家提供一个公平的样本,针对同一个问题进行处理时,可以用这些...

2945
来自专栏人工智能头条

Azure Machine Learning 上如何选择合适的机器学习算法

1166
来自专栏ATYUN订阅号

正则化贪心森林(RGF)的入门简介,含案例研究

作为曾参与机器学习竞赛的数据科学家,我一直在寻找“非主流”的算法。使用这些算法可能不会成为竞争的赢家。但是他们有独特的预测方式。这些算法可以在集成模型中使用,以...

4406
来自专栏计算机视觉战队

论文阅读——Selective Search for Object Recognition

今天认真把Selective Search for Object Recognition这篇文章阅读完,想来写写自己的见解与想法。如果有错,希望得到大牛们的指点...

29710
来自专栏机器之心

教程 | 使用Keras实现多输出分类:用单个模型同时执行两个独立分类任务

之前我们介绍了使用 Keras 和深度学习的多标签分类(multi-label classification),参阅 https://goo.gl/e8RXtV...

1662
来自专栏磐创AI技术团队的专栏

实用 | 分享一个决策树可视化工具

【磐创AI导读】:这篇文章希望跟大家分享一个可视化决策树或者随机森林的工具。这可以帮助我们更好的去理解或解释我们的模型。想要获取更多的机器学习、深度学习资源。欢...

1011
来自专栏人工智能LeadAI

Tensorflow之 CNN卷积神经网络的MNIST手写数字识别

前言 tensorflow中文社区对官方文档进行了完整翻译。鉴于官方更新不少内容,而现有的翻译基本上都已过时。故本人对更新后文档进行翻译工作,纰漏之处请大家指正...

5665
来自专栏有趣的Python

TensorFlow应用实战-9-生成音乐

生成音乐的python文件 # -*- coding: UTF-8 -*- """ 用训练好的神经网络模型参数来作曲 """ import pickle i...

3455
来自专栏杨熹的专栏

Ensemble Learners

Udacity Ensemble Learners ---- Boosting Algorithm 不需要绞尽脑汁去想很复杂的 Rules,只需要一些简单的 ...

3347

扫码关注云+社区