谷歌公布72位量子比特处理器,吹响量子霸权冲锋号

AI 科技评论按:谷歌量子 AI 实验室今天发布了新的 72 位量子比特的量子处理器 Bristlecone。虽然目前还没有看到具体的实验结果,但这块芯片的未来有很大潜力,很有可能达成量子计算领域内的重要里程碑。谷歌也在研究博客发表了一篇介绍文章,雷锋网 AI 科技评论全文翻译如下。

谷歌量子 AI 实验室(Google Quantum AI lab)的目标是建造可以用于解决真实世界问题的量子计算机,他们的研究策略是在可以和大规模、通用化、可纠错的量子计算机向前兼容的系统上探索短期解决方案。为了让量子处理器运行经典模拟算法之外的算法,它当然需要更多的量子比特(qubit)数目,但它还需要更多。最关键的是,这个处理器必须在读取以及单、双量子比特门之类逻辑操作中保持很低的错误率。

一年一度的美国物理学会(American Physical Society)会议正在洛杉矶举行,谷歌量子 AI 实验室今天就在会议上公布了他们新的量子处理器 Bristlecone。这是一个基于门电路的超导系统,它的设计目标就是为谷歌的量子技术提供系统错误率和拓展性的研究测试平台,当然也可以探索量子模拟、量子优化以及量子机器学习方面的应用。

Bristlecone 是谷歌的最新量子处理器(左图)。右侧是这个芯片的结构示意图,每一个「X」代表一个量子比特,相邻最近的量子比特之间是相连的

谷歌之前设计的 9 量子比特的线性矩阵已经展现出了低读取错误率(1%)、低单量子比特门错误率(0.1%)、以及最重要的低双量子比特门错误率(0.6%),这也是谷歌目前所能达到的最好结果。新的 Bristlecone 的指导设计思路就是延续之前技术中的物理特性,在耦合、控制、读取中都使用了同样的方法,但把矩阵规模大幅扩大到了 72 量子比特。谷歌之所以选择把新的芯片设计到这个规模,是希望未来得以展示「量子霸权」(指对于某些问题, 量子算法的效率远远优于经典算法)、可以通过表层编码做一阶和二阶的错误纠正,以及帮助为真正的通用化硬件设计量子算法。

展示错误率和量子比特数目之间关系的二维概念示意图。图中的红线表示谷歌量子 AI 实验室的研究方向,他们希望沿着这个方向、以构建出带有错误纠正能力的量子计算机为目标,先取得一些短期应用成果

在探究具体的应用之前,量化认识量子处理器的计算能力也是很重要的一件事。已经有别的理论物理团队为这项任务开发了 benchmark 工具。对于错误率测试,可以向设备输入一个随机的量子电流作为单个系统误差,然后检查样本的输出扰动并把它和经典方法模拟的结果做对比。如果一个量子处理器运行时的错误率最够低,它运行某些定义好的计算机科学问题的速度就可以远超过经典方法的超级计算机,这也就是我们所说的「量子霸权」。测试中使用的随机电流在量子比特数目和计算长度(深度)两个方面都需要足够大。虽然目前还没有人达到错误率 0% 的目标,但是根据谷歌量子 AI 实验室计算,只需要量子比特数目达到 49 位、电路深度超过 40、双量子比特门错误率低于 0.5% 就已经可以展现出明显的「量子霸权」。谷歌相信,一次成功的量子处理器超越经典超级计算机的实验将成为这个领域的分水岭,而这也将是谷歌量子 AI 团队追寻的重点目标。

位于 Santa Barbara 的谷歌量子 AI 实验室中,研究科学家 Marissa Giustina 正在安装一块 Bristlecone 芯片

谷歌量子 AI 团队之前已经在 9 位量子比特的设备上取得了目前最佳的错误率,他们也正在努力尝试在 Bristlecone 的所有 72 个量子比特上都取得类似的表现。一旦 Bristlecone 获得全面成功,这也将为构建更大规模的量子计算机提供极具说服力的原理论证。要让 Bristlecone 这样的设备以低系统错误率运行,也需要软件设计、电子控制和处理器本身等一系列技术的协调工作,只有经过非常仔细的系统工程和多次迭代更新才有可能达成。

对于用 Bristlecone 达成「量子霸权」,谷歌量子 AI 团队保持谨慎乐观的态度,同时也觉得学习建造和运行这种性能级别的设备是一个令人兴奋的挑战。谷歌量子 AI 团队也非常期待未来得以展示自己的实验成果,以及和别的团队共同协作尝试更多实验。

via GoogleBlog,AI 科技评论编译。

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2018-03-06

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏人工智能快报

比人类更准确:人工智能可有效预测心脏病与中风

在许多实验中(尽管还并没有出现在许多临床中),人工智能系统在诊断疾病、分析医学图像以及预测健康状况方面展示出很好的前景。它们在某些任务中,甚至比医生们做的还要好...

2916
来自专栏企鹅号快讯

死亡不可避免,但何时死,人工智能或有发言权

中国有句老话,“阎王要你三更死,谁敢留你到五更”。死亡是生命必经的步骤,当它来临时,纵有亿万家财亦不能兑换生命。 ? 借用中医的老话,“药医不死病,医治有缘人”...

1798
来自专栏BestSDK

IBM识别癌变细胞技术取得重大突破,用深度学习与神经网络重塑病理学

医生在诊断癌变细胞时,主要通过用活组织切片检查法分析病人组织样本的方式。然而即使这些组织有时如针头般微小,病理学家需要从中检测出肿瘤细胞消失的种种迹象,也要观测...

2815
来自专栏量子位

LeCun:现在还没有真正的AI系统,机器与生物系统差远了

? 可能我们现在提到的AI都是假AI。 近日,Facebook首席人工智能科学家Yann LeCun在纽约大学坦登工程学院的AI研讨会上谈了谈AI的历史和方向...

3169
来自专栏AI科技评论

学界|IBM识别癌变细胞技术取得重大突破,用深度学习与神经网络重塑病理学

IBM 最近在医学领域成果喜人,动作不断。继成功用照片诊断皮肤癌后,IBM 研究院日前发布最新成果称,他们采用了深度学习和神经网络,在识别癌变细胞的有丝分裂上取...

3176
来自专栏机器之心

专栏 | 深思考:实现人机多轮交互突破是攻克图灵测试的核心

机器之心专栏 作者:杨志明、王泳、毛金涛 本文作者是中科院 NLP 博士,深思考人工智能机器人科技 ideepwise 的首席架构师/CEO 杨志明博士,首席...

33010
来自专栏CSDN技术头条

如何解读「中国科大首次实现量子机器学习算法」?

如何解读「量子计算应对大数据挑战:中国科大首次实现量子机器学习算法」? ---- 1)关于这项工作本身 ? 简单来说就是,用光子比特(photonic qub...

1875
来自专栏PPV课数据科学社区

批评文:大数据,大安利

最近在社会上刮起一阵大数据的不正之风,本科生也敢拿着几个G的硬盘声称这些数据能解决某某疑难问题,让人联想起存满硬盘黄片的处男说这家伙老爽了。 虽然在社会科学领域...

2808
来自专栏新智元

【Goldberg回应LeCun】DL社群缺乏学习,夸大研究成果

【新智元导读】Yann LeCun 对于 Yoav Goldberg 的驳斥得到了 Goldberg 第一时间的回应。他表示自己并不反对在语言任务上使用深度学习...

34612
来自专栏AI科技评论

动态 | 微软亚洲研究院CVPR圆桌:机器学习火成这样,如何让计算机视觉“独立”发展?

「微软亚洲研究院创研论坛——CVPR 2017 论文分享会」于上周顺利举行。由微软亚洲研究院主办,清华大学媒体与网络技术教育部-微软重点实验室承办,中国图象图形...

3297

扫描关注云+社区