ECAI 2016论文精选 | 更快,更精确的人脸识别方法

导读:ECAI 2016是欧洲展示AI科学成果的最佳场所,大会为研究人员提供了很好的机会,去介绍和听取当代最优秀的人工智能研究成果。

人脸识别的随机典型相关判别分析(Randomized Canonical Correlation Discriminant Analysis for Face Recognition)

摘要:典型相关分析(CCA)作为多元统计分析中的一大重要技术,已广泛应用于脸部识别。但是现存基于CCA的脸部识别方法需要相同脸部脸样本的两种表达,而且在处理大样本时,通常会受到较高的计算复杂度困扰。在本文中,我们提出了一种监督的方法,称为随机典型相关判别分析(RCCDA),它基于随机非线性典型相关分析(RCCA)以弥补基于CCA脸部识别方法的不足。我们首先获得基本向量大概的随机特征,而不是计算核心矩阵来提高计算的效率,然后,我们使用这些基础向量来计算随机最优判别特征,它可以减少人脸特征的维数,同时尽可能多的保留歧视性信息。扩展Yale B,AR,ORL和FERET脸部数据库的实验结果显示,我们方法的性能与一些最好的算相比法也毫不逊色。

第一作者简介

Bo Ma

任职:中国计算机学会会员,IEEE会员,北京理工大学计算机学院副教授,博士生导师 研究方向:机器学习、图像处理、计算机视觉、模式识别、信息融合。近期的研究重点包括图像目标跟踪、压缩感知、图像分类、基于变分法的图像处理等。 相关学术论文: ·“Linearization to Nonlinear Learning for Visual Tracking”(ICCV2015) ·“Discriminative Visual Tracking Using Tensor Pooling”(2015)

文章总结及应用场景

本文中,提出了一种有效的人脸识别方法-RCCDA。我们的方法提取局部特征,然后采用RCCDA减少维度并将局部特征映射到一个最佳的判别空间。该方法的主要优点是RCCDA保留尽可能多的歧视性信息,且通过随机方法大大加快计算速度。扩展Yale B,AR,ORL和FERET脸部数据库的实验结果显示,我们方法的性能与一些最好的算相比法也毫不逊色。

提出的RCCDA作为一种有效的特征提取方法,也可以用于其他识别任务,如视觉跟踪,图像检索与图像分类。对于这些任务,特征提取过程都可以用我们的方法取代。只需要少量的训练样本,就可以有效地获得必要的区分信息。我们未来的工作将专注于应用所提出的方法到其它的识别问题中,并优化局部特征组合,核心函数和其RCCDA编码方法。

via:ECAI 2016

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2016-08-31

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器之心

NLP领域的ImageNet时代到来:词嵌入「已死」,语言模型当立

长期以来,词向量一直是自然语言处理的核心表征技术。然而,其统治地位正在被一系列令人振奋的新挑战所动摇,如:ELMo、ULMFiT 及 OpenAI transf...

1463
来自专栏深度学习

14种模型设计帮你改进你的卷积神经网络(CNN)

自2011年以来,深度卷积神经网络(CNN)在图像分类的工作中的表现就明显优于人类,它们已经成为在计算机视觉领域的一种标准,如图像分割,对象检测,场景标记,跟踪...

3519
来自专栏机器之心

从大间隔分类器到核函数:全面理解支持向量机

26010
来自专栏IT派

推荐|14种模型设计帮你改进你的卷积神经网络(CNN)!

如果你觉得好的话,不妨分享到朋友圈。 摘要: 这14 种原创设计模式可以帮助没有经验的研究者去尝试将深度学习与新应用结合,对于那些没有机器学习博士学位的人来说...

3436
来自专栏SIGAI学习与实践平台

化秋毫为波澜:运动放大算法(深度学习版)

运动放大(Motion Magnification),将视频中对应位置的运动进行放大,简单理解的话,就是找到时间段内的运动矢量,进行放大,然后权值叠加回去。

1155
来自专栏机器之心

ICML 2018 | 腾讯AI Lab提出误差补偿式量化SGD:显著降低分布式机器学习的通信成本

作者:Jiaxiang Wu、Weidong Huang、Junzhou Huang、Tong Zhang

1022
来自专栏企鹅号快讯

深度学习平台技术演进

2017年12月22日,袁进辉(老师木)代表OneFlow团队在全球互联网架构大会上海站做了《深度学习平台技术演进》的报告,小编对报告内容作简要梳理注解,以飨读...

2057
来自专栏AI研习社

迁移成分分析 (TCA) 方法简介

之前整理总结迁移学习资料的时候有网友评论,大意就是现在的类似资料大全的东西已经太多了,想更深入地了解特定的细节。从这篇文章开始我将以《小王爱迁移》为名写一系列的...

3994
来自专栏SIGAI学习与实践平台

化秋毫为波澜:运动放大算法(深度学习版)

运动放大(Motion Magnification),将视频中对应位置的运动进行放大,简单理解的话,就是找到时间段内的运动矢量,进行放大,然后权值叠加回去。

992
来自专栏机器学习、深度学习

人群密度估计--Crowd Counting Via Scale-adaptive Convolutional Nerual Network

Crowd Counting Via Scale-adaptive Convolutional Nerual Network https://arxiv....

2085

扫码关注云+社区