大数据是个什么鬼?

关于大数据,有这样一段话:

“Big data is like teenage sex,everyone talks about it,nobody really knows how to do it,everyone thinks everyone else is doing it,so everyone claims they are doing it.”

看完这句话,大家对什么是“大数据”有点概念了吗?目前,大多数人对大数据的概念还停留在:就是海量的数据,PB(1PB=1024TB)级别的,甚至是 EB、ZB 以上的数据,通过对这些数据进行深入分析,就能得出非常有价值的结论,指引企业做出最佳决策。

大数据就是那种每个人都听过,或者看过此类文章,但却不怎么了解的事物。

其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数据分析,是通过提出假设然后获得相应数据,最后通过数据分析 来验证假设。而大数据不是这样的,大数据是从收集的海量数据中,通过算法将这些来自不同渠道、格式的数据进行直接分析,从中寻找到数据之间的相关性。简单 而言,大数据更偏重于发现,以及猜测/印证的循环逼近过程。

而大数据的价值体现在对它的分析利用上。一直以来,大数据的瓶颈并不是数据规模巨大导致的存储、运算等问题,而是在前端数据的收集途径,以及对数据进行结构化处理,进而引导后期的商业决策中的模型和算法问题。

各个行业都在产生数据,现代社会的数据量正持续地以前所未有的速度增加着。这些不同类型的数据和数据型,极其复杂,包括结构化、半结构化和非结构化 的数据。企业需要整合并分析来自复杂的传统和非传统信息源的数据,包括企业内部和外部的数据。随着传感器、智能设备和社会协同技术的爆炸性增长,数据的类 型变得难以计数,包括文本、微博、传感器数据、音频、视频等。

而现在大热的数据分析师正在做的是这样的工作:收集信息,将信息结构化数据化,最后才是我们能看到的大数据带来的神奇力量。但问题是其中对数据进行处理工作量太大了。根据访谈和专家测算,数据分析师的 50%~80% 的时间都花在了处理数据上。

在智能手环公司 Jawbone 负责数据工作的 Monica Rogati说:

处理数据是整项工作中巨大的部分。但有时我们感到沮丧,因为好像不停地处理数据就是我们做的所有事情。

这听起来有点像冰山理论,即我们能看到的大数据只是冰山露出来的一个小角,而我们看不到的地方,如大数据的前期工作,就是海水下是更巨大的部分。

但咨询公司麦肯锡曾在 2011 的报告中指出:

“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。”

是的,存在问题的地方也潜藏着机会。原始数据的格式和来源不可计数,举一个例子,假如一家食品行业的企业需要进行大数据的收集和分析,它能收集的数 据包括产量、出货的位置信息、天气报告、零售商每日销售量、社交媒体评论等。而根据这些信息,企业能够洞察出市场的风向和需求的变化,进而制定相应的产品 计划。

的确,获得的信息越多越有利于企业做出明智的决策。但这个决策是建立在不同的数据集之上的,这些来自各种传感器、文档、网页、数据库的的数据,全部都是不同的格式,它们必须要被转换为统一的格式,这样软件才能理解它们,进行分析。

将各类数据进行格式统一是一个严峻的挑战,因为数据和人类语言一样都具有模糊性,有些数据人类知道是什么意思,但电脑却不能识别,因此我们需要人工来一次又一次地重复这个工作。

现在已经有不少的初创公司试图开发相关的技术来减轻这项工作,例如ClearStory Data,一家在帕洛阿尔托的初创公司,它开发的软件能识别不同的数据来源,将它们整合,并将结果用视觉方式呈现,如图表、图形或数据地图。再如Paxata,一家加州的初创公司,专注于数据的自动化——发现、清理、调配数据,通过 Paxata 处理过的数据能被送入各种分析或可视化软件工具。

大数据目前的情况和计算机发展的轨迹有点相似。一种先进的技术,最初往往只被几名精英掌握,但随着时间流逝,通过不断地技术创新和投资,这项技术,或者说工具,会变得越来越好。特别是当其融入到商业领域中后,这项工具就能得到广泛应用,成为社会中的主流。

所以我们现在是历史的见证者,看着大数据如何一步步完善,我们都需要掌握或选择一个最佳的分析方法,以更好地挖掘出大数据的价值。

继续探索吧。

原文发布于微信公众号 - php(phpdaily)

原文发表时间:2015-07-11

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏单人行动

【转载】大数据赋能,如何精细化运营?

3月18日,腾讯大数据举办了2018年线下沙龙—深圳站,吸引了深圳互联网圈众多运营&推广的小伙伴踊跃报名参加活动,共同探讨主题:互联网用户增长与运营之道。

47311
来自专栏钱塘大数据

国家大数据标准将出台,企业建设大数据之路如何走?

企业用户如何避免在大数据建设中“东一榔头西一锤子”,或者完全被厂商牵着鼻子走,如何能真正获取大数据的价值?这都是企业用户在大数据建设中真正关注的问题。 本文作者...

3619
来自专栏灯塔大数据

大数据的未来掌控于数据集成

? 作者:Ronald van Loon 作者简介:Ronald van Loon被Onanlytica,Data Science Central,Klout...

2422
来自专栏BestSDK

物联网智能时代的风口——边缘计算

什么是边缘计算? 为了定义的缘故,当边缘服务器是指内容传送网络(CDN)中的服务器的术语时,广义的边缘计算似乎起源于近20年前。它最近出现在处理,分析和应用网络...

2484
来自专栏大数据文摘

CBinsight | 分析101个创业失败案例,我们总结了20大失败原因

2526
来自专栏AI科技大本营的专栏

专访天数智芯倪岭:如何赋能企业更有效地进行AI应用开发

近年来,在大数据、云计算等技术升级的共同推动下,人工智能技术及应用取得了蓬勃发展。如今,继“互联网+”之后,“AI+”已蔚然成风。

843
来自专栏腾讯云人工智能

腾讯云SCS,让流计算从“零件”到“服务”

在大数据时代的初期,我们面临的数据主要是大容量的静态数据集,针对离线和大规模数据分析设计的Hadoop依靠HDFS和Mapreduce可以灵活、高效的处理这种数...

28512
来自专栏大数据文摘

数据挖掘技术与经典案例分析

2585
来自专栏华章科技

PPT | 数据挖掘技术与经典案例分析

在这个信息爆炸的年代,产生数据的渠道迅速增加,数据库中的数据量也成指数增加,大数据从2012年成为一个热门词汇,它之所以受到人们的关注和谈论,是因为隐藏在它后面...

791
来自专栏机器之心

观点 | Hadoop没有消亡,它是大数据的未来

选自KDnuggets 作者:Vamsi K. Chemitiganti 机器之心编译 参与:微胖、李泽南、吴攀 有人认为 Hadoop 正在失败,但硅谷数据管...

34712

扫描关注云+社区