大数据是个什么鬼?

关于大数据,有这样一段话:

“Big data is like teenage sex,everyone talks about it,nobody really knows how to do it,everyone thinks everyone else is doing it,so everyone claims they are doing it.”

看完这句话,大家对什么是“大数据”有点概念了吗?目前,大多数人对大数据的概念还停留在:就是海量的数据,PB(1PB=1024TB)级别的,甚至是 EB、ZB 以上的数据,通过对这些数据进行深入分析,就能得出非常有价值的结论,指引企业做出最佳决策。

大数据就是那种每个人都听过,或者看过此类文章,但却不怎么了解的事物。

其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数据分析,是通过提出假设然后获得相应数据,最后通过数据分析 来验证假设。而大数据不是这样的,大数据是从收集的海量数据中,通过算法将这些来自不同渠道、格式的数据进行直接分析,从中寻找到数据之间的相关性。简单 而言,大数据更偏重于发现,以及猜测/印证的循环逼近过程。

而大数据的价值体现在对它的分析利用上。一直以来,大数据的瓶颈并不是数据规模巨大导致的存储、运算等问题,而是在前端数据的收集途径,以及对数据进行结构化处理,进而引导后期的商业决策中的模型和算法问题。

各个行业都在产生数据,现代社会的数据量正持续地以前所未有的速度增加着。这些不同类型的数据和数据型,极其复杂,包括结构化、半结构化和非结构化 的数据。企业需要整合并分析来自复杂的传统和非传统信息源的数据,包括企业内部和外部的数据。随着传感器、智能设备和社会协同技术的爆炸性增长,数据的类 型变得难以计数,包括文本、微博、传感器数据、音频、视频等。

而现在大热的数据分析师正在做的是这样的工作:收集信息,将信息结构化数据化,最后才是我们能看到的大数据带来的神奇力量。但问题是其中对数据进行处理工作量太大了。根据访谈和专家测算,数据分析师的 50%~80% 的时间都花在了处理数据上。

在智能手环公司 Jawbone 负责数据工作的 Monica Rogati说:

处理数据是整项工作中巨大的部分。但有时我们感到沮丧,因为好像不停地处理数据就是我们做的所有事情。

这听起来有点像冰山理论,即我们能看到的大数据只是冰山露出来的一个小角,而我们看不到的地方,如大数据的前期工作,就是海水下是更巨大的部分。

但咨询公司麦肯锡曾在 2011 的报告中指出:

“数据,已经渗透到当今每一个行业和业务职能领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。”

是的,存在问题的地方也潜藏着机会。原始数据的格式和来源不可计数,举一个例子,假如一家食品行业的企业需要进行大数据的收集和分析,它能收集的数 据包括产量、出货的位置信息、天气报告、零售商每日销售量、社交媒体评论等。而根据这些信息,企业能够洞察出市场的风向和需求的变化,进而制定相应的产品 计划。

的确,获得的信息越多越有利于企业做出明智的决策。但这个决策是建立在不同的数据集之上的,这些来自各种传感器、文档、网页、数据库的的数据,全部都是不同的格式,它们必须要被转换为统一的格式,这样软件才能理解它们,进行分析。

将各类数据进行格式统一是一个严峻的挑战,因为数据和人类语言一样都具有模糊性,有些数据人类知道是什么意思,但电脑却不能识别,因此我们需要人工来一次又一次地重复这个工作。

现在已经有不少的初创公司试图开发相关的技术来减轻这项工作,例如ClearStory Data,一家在帕洛阿尔托的初创公司,它开发的软件能识别不同的数据来源,将它们整合,并将结果用视觉方式呈现,如图表、图形或数据地图。再如Paxata,一家加州的初创公司,专注于数据的自动化——发现、清理、调配数据,通过 Paxata 处理过的数据能被送入各种分析或可视化软件工具。

大数据目前的情况和计算机发展的轨迹有点相似。一种先进的技术,最初往往只被几名精英掌握,但随着时间流逝,通过不断地技术创新和投资,这项技术,或者说工具,会变得越来越好。特别是当其融入到商业领域中后,这项工具就能得到广泛应用,成为社会中的主流。

所以我们现在是历史的见证者,看着大数据如何一步步完善,我们都需要掌握或选择一个最佳的分析方法,以更好地挖掘出大数据的价值。

继续探索吧。

原文发布于微信公众号 - php(phpdaily)

原文发表时间:2015-07-11

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏LiveEdu在线科技教育平台

程序员:我们为什么爱上直播编程?

在“直播”没有进入互联网之前,我们是不会想到几乎所有事情都可以通过互联网,电脑或移动设备展现在公众面前。如今,无数网红通过直播分享他们的生活和工作,与粉丝互动,...

33711
来自专栏腾讯社交用户体验设计

打破设计的壳--听D族通道评审的个人思考

954
来自专栏非著名程序员

其实还是喜欢做那个专心敲码的程序员

这是我去年九月份换工作的时候写的一篇文章,以为之前分享过呢,现在才发现,我只发了博客,没发公众号,现在我的岗位虽然有发生了变化,但是之前的分享,我感觉还是很有意...

962
来自专栏人工智能快报

欧盟“人脑工程”开放六大ICT平台

2016年3月30日,欧盟“人脑工程(HBP)”项目宣布向该项目外部的用户开放六大信息与通讯技术(ICT)平台,这些平台旨在帮助科学界加速神经科学、医学与计算领...

3274
来自专栏AI科技大本营的专栏

AI 行业实践精选:2017年聊天机器人的现状(一)——机会

【AI100 导读】2016年,聊天机器人异常火爆,也引起了各大行业的广泛关注,然而效果并不是很好。那么,2017年聊天机器人该走向何方?聊天机器人当前技术形势...

3164
来自专栏新智元

机器学习未来十年:企业不再需要大笔R&D资金

【新智元导读】著名投资人 Paramita Ghosh 日前撰写博文,总结近年来在企业软件生态系统得到大幅发展,ML技术容易操作、方便部署,同时市场也已经成熟了...

3278
来自专栏腾讯研究院的专栏

透视媒体大数据营销

  北京时间2月5日,在由新浪网主办的“2014新浪全媒体高峰论坛”上,缔元信.网络数据CEO秦雯女士发表了题为“媒体大数据营销”的演讲,从实操层面分享了大数...

1938
来自专栏ATYUN订阅号

【AI科技】想要与用户建立更好的关系?AI语音技术来帮你

AI将会与当初的互联网一样,为各行各业赋能。有自然语言处理、机器学习、计算机视觉、AI算法驱动的语言增强现实和聊天机器人等等,每一项技术都可以给企业提供相当大的...

2166
来自专栏技术翻译

AI和Chatbot应用程序如何改变移动技术?

移动技术正在为未来做好准备。用户将看到各种新兴趋势,帮助企业收集有用的数据,这些数据可以用来增加应用程序的用户体验和用户参与度。

950
来自专栏企鹅号快讯

互联网产品运营体系总结之产品设计

前段时间写了两篇关于产品运营方法的文章,发表到产品经理专业网站上,受到大家的欢迎。这段时间自己也一直在思考,如果只有当我们碰到困难和问题时,才去找方法,未免工作...

2557

扫码关注云+社区