机器学习(十一) ——神经网络基础

机器学习(十一)——神经网络基础

(原创内容,转载请注明来源,谢谢)

一、概述

神经网络,可以理解为输入的内容,经过一系列的内部的处理,得到输出的假设函数。简单的神经网络如下图:

可以看出,三个输入,经过中间的变化,得到输出。中间橙色的圈,称为神经元。神经元可以分层,下图是三层神经网络模型:

其中,第一层蓝色的圈,叫做输入层;中间一层橙色的圈叫做隐藏层;右边的橙色圈叫做输出层。神经网络有一个输入层和一个输出层,隐藏层可以有多层。神经元的连接方式,称为神经网络的架构。

二、基本公式

上图的三层神经网络,ai(j)表示的是第j层、第i个变量。每个变量都是由上一层计算得到的,计算公式如下图:

用zi(j)表示对应的ai(j)的式子中的g函数内部的式子,可以看出,神经元实质上就是输入的变量经过若干个线性变换,得到输出。

上图的xi,都省略了x0,x0一直都是1。另外,g(z)即logistic回归中的g(z)函数,即g(z)=1/(1+e-θTx)

三、具体例子

现要使用神经网络实现与、或、非、异或的逻辑运算。

1、与

假设有两个特征值x1、x2,他们的取值范围是0或1,y=x1&&x2,由g(z)的公式,可以大致推导出,z=4时y约等于1,z=-4时y约等于0。则可以假设h(x)=g(z)=g(-30+20x1+20x2)(其中x0=1),神经网络如下图所示:

则此时即表示实现了一个具有“与”功能的神经元。

2、或

类似与,或可以用如下假设方式:

3、非

非的表示方式如下:

4、非异或

非异或(XNOR),即异或的结果再进行非操作。此时,用到了三层的神经网络,中间一层是隐藏层,用于计算异或,并把结果传到第三层进行处理后输出。

根据异或的公式,可以知道x1XOR x2,则x1或x2中1个是1的时候结果是1,否则是0,则XNOR则是x1和x2都是1,或者x1和x2都不是1的情况。

因此,第二层,则计算了x1和x2都是1,或者x1和x2都不是1的情况。分别是红色的圈和蓝色的圈的表示。

第三层进行或运算,接收第二层的结果。

四、多变量情况

多变量情况,类似上面的内容,下面是例如要区分一个图片是轿车、人、摩托车、卡车的简易神经网络(没有具体过程,就是粗略模型)。

实际上,就是将输入的图片的像素点,经过若干隐藏层的处理后,进行输出。

——written by linhxx 2018.01.09

原文发布于微信公众号 - 决胜机器学习(phpthinker)

原文发表时间:2018-01-09

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏计算机视觉

基于图的分割 Efficient Graph-Based Image Segmentation 论文详解

输入图片 不同参数下的分割结果 原图片 产生superpixel的方法 1. How to segment an image into regions?    ...

4218
来自专栏ATYUN订阅号

一文带你认识深度学习中不同类型的卷积

卷积(convolution)现在可能是深度学习中最重要的概念。靠着卷积和卷积神经网络(CNN),深度学习超越了几乎其它所有的机器学习手段。 ? 这篇文章将简要...

4209
来自专栏机器学习算法工程师

趣谈深度学习核心----激活函数

作者:詹晓辉 编辑:王抒伟 当你在苦扒图像处理方法得时候 他在用深度学习 当你在干瞪切片像素得时候 他在用深度学习 当你在愁思小偷是谁得时候 他在用深度学习 当...

3587
来自专栏Ldpe2G的个人博客

Mxnet 实现图片快速风格化

论文链接:Perceptual Losses for Real-Time Style Transfer and Super-Resolution

1587
来自专栏TensorFlow从0到N

【译】TensorFlow实现Batch Normalization

原文:Implementing Batch Normalization in Tensorflow 来源:R2RT 译者注:本文基于一个最基础的全连接...

6816
来自专栏林欣哲

10分钟教你深度学习的调参

深度学习的训练方法可参见我之前的文章深度学习的训练,以下则是调参的手法及典型值。 两类需要调参的参数(parameters) 优化类的参数:学习率(learni...

5688
来自专栏Petrichor的专栏

深度学习: Faster R-CNN 网络

网络结构有两种,一种是将ZFNet(扔掉了尾端的全连接层)拿来用,另一种则是将VGG拿来用(扔掉了尾端的全连接层)。论文中给出的是第一种(绿框内为拿来用的那部分...

3454
来自专栏PPV课数据科学社区

TensorFlow基本操作 实现卷积和池化

之前已经提到过图像卷积的操作和意义,并且用OpenCV中的filter2D函数实现了一些例子。OpenCV中的filter2D函数仅仅是用一个卷积核去卷积单个的...

832
来自专栏郭耀华‘s Blog

卷积神经网络CNN的意义

1663
来自专栏机器学习、深度学习

快速小目标检测--Feature-Fused SSD: Fast Detection for Small Objects

Feature-Fused SSD: Fast Detection for Small Objects 本文针对小目标检测问题,对 SSD 模型进行了一个小的改...

4838

扫码关注云+社区