pytorch入门教程 | 第四章:准备图片数据集

在训练神经网络之前,我们必须有数据,作为资深伸手党,必须知道以下几个数据提供源:

1 CIFAR-10

CIFAR-10图片样本截图

CIFAR-10是多伦多大学提供的图片数据库,图片分辨率压缩至32x32,一共有10种图片分类,均进行了标注。适合监督式学习。CIFAR-10数据下载页面:http://www.cs.toronto.edu/~kriz/cifar.html

2 ImageNet

imagenet首页

ImageNet首页:http://image-net.org/

3

ImageFolder

imagefolder首页

ImageFolder首页:https://www.tugraz.at/institute/icg/home/

4

LSUN Classification

LSUN Classification

LSUN 图片下载地址:

http://lsun.cs.princeton.edu/2016/

5

COCO (Captioning and Detection)

coco首页

COCO首页地址:

http://mscoco.org/

6

我们进入正题

为了方便加载以上五种数据库的数据,pytorch团队帮我们写了一个torchvision包。使用torchvision就可以轻松实现数据的加载和预处理。

我们以使用CIFAR10为例:

导入torchvision的库:

import torchvision import torchvision.transforms as transforms # transforms用于数据预处理

使用datasets.CIFAR10()函数加载数据库。CIFAR10有60000张图片,其中50000张是训练集,10000张是测试集。

#训练集,将相对目录./data下的cifar-10-batches-py文件夹中的全部数据(50000张图片作为训练数据)加载到内存中,若download为True时,会自动从网上下载数据并解压trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=False, transform=None)

下面简单讲解root、train、download、transform这四个参数

1.root,表示cifar10数据的加载的相对目录

2.train,表示是否加载数据库的训练集,false的时候加载测试集

3.download,表示是否自动下载cifar数据集

4.transform,表示是否需要对数据进行预处理,none为不进行预处理

由于美帝路途遥远,靠命令台进程下载100多M的数据速度很慢,所以我们可以自己去到cifar10的官网上把CIFAR-10 python version下载下来,然后解压为cifar-10-batches-py文件夹,并复制到相对目录./data下。(若设置download=True,则程序会自动从网上下载cifar10数据到相对目录./data下,但这样小伙伴们可能要等一个世纪了),并对训练集进行加载(train=True)。

如图所示,在脚本文件下建一个data文件夹,然后把数据集文件夹丢到里面去就好了,注意cifar-10-batches-py文件夹名字不能自己任意改。

我们在写完上面三行代码后,在写一行print一下trainset的大小看看:

print len(trainset) #结果:50000

我们在训练神经网络时,使用的是mini-batch(一次输入多张图片),所以我们在使用一个叫DataLoader的工具为我们将50000张图分成每四张图一分,一共12500份的数据包。

#将训练集的50000张图片划分成12500份,每份4张图,用于mini-batch输入。shffule=True在表示不同批次的数据遍历时,打乱顺序(这个需要在训练神经网络时再来讲)。num_workers=2表示使用两个子进程来加载数据 import torch trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=False, num_workers=2)

那么我们就写下了这几行代码:

print的结果为50000和12500

下面我们需要对数据进行预处理,什么是预处理?为什么要预处理?如果不知道的小盆友可以看看下面几个链接,或许对你有帮助。神经网络为什么要归一(http://blog.csdn.net/liuheng0111/article/details/52841838),深度学习-----数据预处理(http://blog.csdn.net/dcxhun3/article/details/47999281)。还无法理解也没关系,只要记住,预处理会帮助我们加快神经网络的训练。

在pytorch中我们预处理用到了transforms函数:

transform=transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),])

compose函数会将多个transforms包在一起。

我们的transforms有好几种,例如transforms.ToTensor(), transforms.Scale()等,完整列表在这。好好学习吧!

我只讲现在用到了两种:

1.ToTensor是指把PIL.Image(RGB) 或者numpy.ndarray(H x W x C) 从0到255的值映射到0到1的范围内,并转化成Tensor格式。

2.Normalize(mean,std)是通过下面公式实现数据归一化

channel=(channel-mean)/std

那么经过上面两个转换一折腾,我们的数据中的每个值就变成了[-1,1]的数了。

1到22行,我们从硬盘中读取数据,并将数据预处理(第13行,transform=transform),然后转换成4张图为一批的数据结构。26行到47行,为我们显示出一个图片例子,可有可无,不再作代码解释。

原文发布于微信公众号 - 人工智能LeadAI(atleadai)

原文发表时间:2017-09-04

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏PaddlePaddle

【FAQ】本地训练与预测相关问题汇总

导语 在使用指南的最后一部分,我们汇总了使用PaddlePaddle过程中的常见问题,本部分推文目录如下: 2.22:【FAQ】模型配置相关问题汇总 2.23:...

35110
来自专栏机器学习实践二三事

使用FCN做图像语义分割(实践篇)

FCN原理 原理我已经在上篇博客说过,大家可以参考FCN原理篇 代码 FCN有官方的代码,具体地址是FCN官方代码 不过我用的不是这个代码,我用的是别人修改...

4207
来自专栏WOLFRAM

可视化:标签、缩放和排除

1784
来自专栏用户2442861的专栏

caffe python 图片训练识别 实例

版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/haluoluo211/article/details...

2772
来自专栏机器之心

教程 | TensorFlow 官方解读:如何在多系统和网络拓扑中构建高性能模型

选自Tensorflow 机器之心编译 参与:黄玉胜、黄小天 这个文档和附带的脚本详细介绍了如何构建针对各种系统和网络拓扑的高性能可拓展模型。这个技术在本文档中...

31411
来自专栏点滴积累

使用 opencv 将图片压缩到指定文件尺寸

前言 图片压缩应用很广泛,如生成缩略图等。前期我在进行图片处理的过程中碰到了一个问题,就是如何将图片压缩到指定尺寸,此处尺寸指的是生成图片文件的大小。 我使用 ...

6308
来自专栏ATYUN订阅号

使用Tensorflow对象检测在安卓手机上“寻找”皮卡丘

在TensorFlow的许多功能和工具中,隐藏着一个名为TensorFlow对象探测API(TensorFlow Object Detection API)的组...

4465
来自专栏分子生物和分子模拟计算

Molecular docking study of antibody-ligand complex

882
来自专栏Small Code

【TensorFlow | TensorBoard】理解 TensorBoard

TensorBoard 是用于可视化 TensorFlow 模型的训练过程的工具(the flow of tensors),在你安装 TensorFlow 的时...

99712
来自专栏破晓之歌

神经网络简介 原

784

扫码关注云+社区