谷歌超分辨率技术 RAISR :模糊图片瞬变高清,速度提升数十倍

编者按:每天都有数以百万计的图片在互联网上被分享、存储,用户借此探索世界,研究感兴趣的话题,或者与朋友家人分享假期照片。问题是,大量的图片要么被照相设备的像素所限制,要么在手机、平板或网络限制下被人为压缩,降低了画质。

如今高清显示屏正在家庭和移动设备上普及,因此,把低分辨率图片转化为高清版本,并可在多种设备上查看和分享,正在成为一项巨大的需求。日前,谷歌推出了一项新技术 RAISR,其全称是“Rapid and Accurate Image Super-Resolution”,意为“快速、精确的超分辨率技术”。

RAISR 这项技术能利用机器学习,把低分辨率图片转为高分辨率图片。它的效果能达到甚至超过现在的超分辨率解决方案,同时速度提升大约十至一百倍,且能够在普通的移动设备上运行。而且,谷歌的技术可以避免产生混叠效应 (aliasing artifacts)。

此前已经具有通过升采样方式,把低分辨率图片重建为尺寸更大、像素更多、更高画质图片的技术。最广为人知的升采样方式是线性方法,即通过把已知的像素值进行简单、固定的组合,以添加新的像素值。因为使用固定的线性过滤器(一个恒定卷积核对整个图片的无差别处理),该方法速度很快。但是它对于重建高清作品里生动的细节有些力不从心。

正如下面这张图片,升采样的图片看起来很模糊,很难称得上画质提升。

左:原始图片,右:升采样处理后图片

对于 RAISR,谷歌别辟蹊径得采用机器学习,用一对低分辨率、高分辨率图片训练该程序,以找出能选择性应用于低分辨图片中每个像素的过滤器,这样能生成媲美原始图片的细节。目前有两种训练RAISR的方法:

  • 第一种是“直接”方式,过滤器在成对高、低分辨率图片中直接学习。
  • 第二种方法需要先对低分辨率图片应用低功耗的的升采样,然后在升采样图片和高分辨率图片的组合中学习过滤器。
  • “直接”方式处理起来更快,但第二种方法照顾到了非整数范围的因素,并且更好地利用硬件性能。

无论是哪种方式,RAISR 的过滤器都是根据图像的边缘特征训练的:亮度和色彩梯度,平实和纹理区域等等。这又受到方向(direction,边缘角度),强度(strength,更锐利的边缘强度更高)和黏性 (coherence,一项量化边缘方向性的指标)的影响。以下是一组 RAISR 过滤器,从一万对高、低分辨率图片中学习得到 (低分辨率图片经过升采样)。该训练过程耗费约一小时。

注:3 倍超分辨率学习,获得的 11x11 过滤器集合。过滤器可以从多种超分辨率因素中学习获得,包括部分超分辨率。注意当图中边缘角度变化时,过滤器角度也跟着旋转。相似的,当强度提高时,过滤器的锐利度也跟着提高;黏性提高时,过滤器的非均相性(anisotropy)也提高。

从左至右,学习得到的过滤器与处理后的边缘方向有选择性的呼应。举例来说,最底一行中间的过滤器最适合强水平边缘(90 度梯度角),并具有高粘性(直线的而非弯曲的边缘)。如果这个水平边缘是低对比度的,那么如同图中最上一行,另一个过滤器就被选择。

实际使用中,RAISR 会在已经学习到的过滤器列表中选择最合适的过滤器, 应用于低分辨率图片的每一个像素周围。当这些过滤器被应用于更低画质的图像时,它们会重建出相当于原始分辨率的细节,这大幅优于线性、双三(bicubic)、兰索斯 (Lancos)解析方式。

上:RAISR 算法运行示例 下:原始图像 (左),2 倍双三解析 (中),RAISR 效果 (右)

一些运用RAISR进行图片增强的示例:

上:原始图片 下:RAISR 2 倍超分辨率效果

左:原始图片 右:RAISR 3 倍超分辨率效果

超分辨率技术更复杂的地方在于如何避免混叠效应,例如龟纹 (Moire patterns)和高频率内容在低分辨率下渲染产生的锯齿 (对图像人为降级的情形)。这些混叠效应的产物会因对应部分的形状不同而变化,并且很难消除。

左:正常图像 右:右下角有龟纹(混叠效应)的图像

线性方法很难恢复图像结构,但是 RAISR 可以。下面是一个例子,左边是低分辨率的原始图片,左 3 和 左 5 有很明显的空间频率混淆(aliased spatial frequencies),而右侧的 RAISR 图像恢复了其原始结构。 RAISR 的过滤器学习方法还有一项重要的优点:用户可以把消除噪音以及各类压缩算法的产物作为训练的一部分。当 RAISR 被提供相应的范例后, 它可以在图片锐化之外学会消除这些效果,并把这些功能加入过滤器。

左:有强混叠效应的原始图片 右:RAISR 处理后效果

超分辨率技术利用不同的方法已经有了不少喜人的进展。如今,通过把机器学习与多年来不断发展的成像技术相结合,图像处理技术有了长足的进步,并带来许多好处。举例来说,除了放大手机上的图片,用户还可以在低分辨率和超高清下捕捉、存储、传输图像,使用更少的移动网络数据和存储空间,而且不会产生肉眼能观察到的画质降低。

小结:自从乔帮主 2010 年在 iphone 4s 上推出“视网膜屏”概念之后,数码产品市场开启了一场超高清显示革命。如今,家用显示器逐步走向 4K,各大手机厂商也竞相推出 2K 旗舰机。但 2K、4K 内容的缺乏一直是困扰行业发展的痛点。此前的超分辨率技术受成本、硬件限制,主要应用于专业领域,未能大范围普及。

此次谷歌 RAISR 大幅降低了图像增强的时间成本和硬件要求,有望实现超分辨率技术在消费领域的应用,把充斥互联网的低画质图片转化为高清图片,大幅提高视觉效果和用户体验。雷锋网十分期待将来 RAISR 在移动设备的应用,例如把消费者手机拍摄的照片转化为媲美单反画质的高清美图。

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2016-11-15

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器之心

深度 | 2017 CV 技术报告之图像分割、超分辨率和动作识别

3636
来自专栏目标检测和深度学习

最实用的 50 篇文章,教你搭建机器学习 APP

本文为雷锋字幕组编译的推荐系列,原标题 Learn to Build a Machine Learning Application from Top Artic...

3807
来自专栏AI科技大本营的专栏

一文了解卷积神经网络在股票中应用

? 译者 | 阿尔法计算生(个人微信:ixci001) 摘要 卷积神经网络使计算机视觉领域发生了革命性的变化。本文探讨了CNNs的一个典型应用:利用卷积网络来...

3595
来自专栏机器之心

学界 | 宅男的福音:用GAN自动生成二次元萌妹子

58311
来自专栏机器之心

深度 | 2017CV技术报告:从3D物体重建到人体姿态估计

4798
来自专栏机器学习和数学

[机器的机器在学习] 你有一次国庆节大作业待接收~

明天就国庆放假了,正好赶上中秋节,首先祝大家“双节”快乐! 不管是出去玩,还在一个人在家里,在宿舍,在自己的小房子“玩”,祝大家都能找到自己的乐趣!但是呢, 安...

3659
来自专栏灯塔大数据

塔秘 | 宅男的福音:用GAN自动生成二次元萌妹子

导读:相信每个人都会被卡哇伊的二次元妹子萌到,我们很多人也可能梦想自己创作二次元人物,但奈何技艺不精、功力不足,得到的结果往往无法达到我们的期望。现在人工智能来...

5287
来自专栏AI科技大本营的专栏

如何让摄像头变成“暗夜之眼”?英特尔开发了一套基于FCN的成像系统

【AI科技大本营导读】手机拍照的重要性不必多说,不论是国外的苹果、三星,还是国内的华为、小米,都在提升拍照性能上下足了功夫,目前的手机摄像头已经逐渐从单摄走向双...

853
来自专栏企鹅号快讯

2017 CV 技术报告之图像分割、超分辨率和动作识别

选自The M Tank 机器之心编译 参与:晏奇、蒋思源 The M Tank 编辑了一份报告《A Year in Computer Vision》,记录了 ...

4108
来自专栏新智元

【神经网络本质是多项式回归】Jeff Dean等论文发现逻辑回归和深度学习一样好

【新智元导读】谷歌用深度学习分析电子病例的重磅论文给出了一个意外的实验结果,DNN与逻辑回归效果一样,引发了热烈讨论。不仅如此,最近Twitter讨论最多的论文...

1100

扫码关注云+社区