五分钟喝不完一杯咖啡,但五分钟可以带你入门TensorFlow

本文是《人人都能学人工智能-TensorFlow系列》文章的第一篇,这个系列会对TensorFlow的基础使用,SoftMax,交叉熵,Dropout,CNN,LSTM和NLP等内容进行系列介绍,尽量使用通俗的语言,让更多的人都能了解人工智能,了解TensorFlow。

TensorFlow是Google开源的一款人工智能学习系统。为什么叫这个名字呢?Tensor的意思是张量,代表N维数组;Flow的意思是流,代表基于数据流图的计算。把N维数字从流图的一端流动到另一端的过程,就是人工智能神经网络进行分析和处理的过程。

话说在Android占领了移动端后,Google开源了TensorFlow,希望占领AI端。TF的特点是可以支持多种设备,大到GPU、CPU,小到平板和手机都可以跑起来TF。而且TF的使用很方便,几行代码就能开始跑模型,这让神经网络的入门变得非常简单。

本文是第一篇,都是最基础的内容,老手可以略过。

TensorFlow的安装

在开始写代码之前,咱们先得把TensorFlow安装到电脑上。这里有两种方法,一是一个一个手动命令行安装,二是批量的图形化界面安装。

先看手动安装,我们安装好TensorFlow和upyter Notebook就可以了。

1.1、安装TensorFlow

Windows上:

安装CPU版本:管理员模式打开命令行,输入命令:pip install tensorflow

安装GPU版本:管理员模式打开命令行,输入命令:pip install tensorflow-gpu

Linux上:

命令和上面一样,如果你使用的是Python3点几的版本,那么安装命令为:

安装CPU版本:输入命令:pip3 install tensorflow

安装GPU版本:输入命令:pip3 install tensorflow-gpu

如果提示没有安装pip,mac的同学可以先通过命令安装pip:

1 命令行输入:curlhttps://bootstrap.pypa.io/ez_setup.py-o - | sudo python

2 命令行输入:sudo easy_install pip

1.2、安装Jupyter Notebook

这是一个交互式的笔记本,你可以理解为一个比较漂亮和简洁的编辑器。可以很方便地创建和共享文学化程序文档,支持实时代码,数学方程,可视化和 markdown。一般用与做数据清理和转换,数值模拟,统计建模,机器学习等等。

输入命令:pip install jupyter

前面的方法是自己手动一个一个安装,其实已经有人帮我们做了一个大集合,不需要再一个一个手动安装了,下面介绍图形界面的批量安装方式:

1)安装Anaconda。Anaconda是什么?如果你把TensorFlow看做火箭筒,那么Anaconda就是军火库,里面有各种的科学计算,机器学习的Python工具库。在官网下载后,直接安装,然后打开Anaconda,就可以看到下面的页面:

2)点到第二行的Environments,可以看到很多的工具包,搜索TensorFlow,勾选上,然后点击Apply,进行安装就可以了。如果以后还需要其他的工具包,也可以在里面找到,勾选上进行安装。

OK,安装教程到此告一段落。有了jupyter和tensorflow,我们就可以开始基础的运算了。

TensorFlow的基础运算

在搞神经网络之前,先让我们把TensorFlow的基本运算,也就是加减乘除搞清楚。

首先,TensorFlow有几个概念需要进行明确:

1、 图(Graph):用来表示计算任务,也就我们要做的一些操作。

2 、会话(Session):建立会话,此时会生成一张空图;在会话中添加节点和边,形成一张图,一个会话可以有多个图,通过执行这些图得到结果。如果把每个图看做一个车床,那会话就是一个车间,里面有若干个车床,用来把数据生产成结果。

3 、Tensor:用来表示数据,是我们的原料。

4、 变量(Variable):用来记录一些数据和状态,是我们的容器。

5、 feed和fetch:可以为任意的操作(arbitrary operation) 赋值或者从其中获取数据。相当于一些铲子,可以操作数据。

形象的比喻是:把会话看做车间,图看做车床,里面用Tensor做原料,变量做容器,feed和fetch做铲子,把数据加工成我们的结果。

2.1、创建图和运行图

下面我们创建一个图,并在Session中执行它,不用担心看不懂,每句代码都会注释,只有有编程基础,都能OK:

上面就是用TensorFlow进行了一个最简单的矩阵乘法。

2.2、创建一个变量,并用for循环对变量进行赋值操作

可以看到,除了变量创建稍微麻烦一些和必须建立session来运行,其他的操作基本和普通Python一样。

2.3、通过feed设置placeholder的值

有的时候,我们会在声明变量的时候不赋值,计算的时候才进行赋值,这个时候feed就派上用场了

到这里,恭喜你,已经成功入门TensorFlow~ 是不是觉得太简单?好像和深度学习毛线关系都没有嘛。不要急,下一篇文章和大家一起用TensorFlow做一个简单的用神经网络来做手写图片识别的实战。

原文发布于微信公众号 - 人工智能LeadAI(atleadai)

原文发表时间:2017-10-26

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏吉浦迅科技

当Intel的神经棒遇到NVIDIA的Jetson TX2

5795
来自专栏QQ音乐技术团队的专栏

Android 中图片压缩分析(上)

在 Android 中进行图片压缩是非常常见的开发场景,主要的压缩方法有两种:其一是质量压缩,其二是下采样压缩。

1.3K1
来自专栏宏伦工作室

深度有趣 | 01-02 前言和准备工作

用 Python 做一些有意思的案例和应用,内容和领域不限,可以包括数据分析、自然语言理解、计算机视觉,等等等等

752
来自专栏专知

【下载】PyTorch实现的神经网络翻译框架——机器翻译工具包 nmtpytorch

【导读】机器翻译是自然语言处理的重要组成部分,其目的是使用计算机自动将文本翻译成其他语言的形式。近年来,端到端的神经机器翻译发展迅速,已经成为机器翻译系统的新主...

3379
来自专栏Spark学习技巧

第2篇:数据库关系建模

第二篇:数据库关系建模 前言 ER建模环节完成后,需求就被描述成了ER图。之后,便可根据这个ER图设计相应的关系表了。 但从ER图到具体关系表的建立还需要经过两...

3146
来自专栏cs

python统计一下自己的花费

1253
来自专栏上善若水

L016使用/dev/random生成随机数

很多库例程产生的“随机”数是准备用于仿真、游戏等等;它们在被用于密钥生成一类的安全函数时是不够随机的。其问题在于这些库例程使用的算法的未来值可以被攻击者轻易地推...

1014
来自专栏媒矿工厂

Ittiam优化VP9,turnaround时间大幅减少

libvpx是Google开发的视频编解码器VP8和VP9的开源软件实现库。libvpx中包含了VP9视频编码算法,相比H.264/AVC,在高...

2865
来自专栏人人都是极客

五分钟喝不完一杯咖啡,但五分钟可以带你入门TensorFlow

本文是《人人都能学人工智能-TensorFlow系列》文章的第一篇,这个系列会对TensorFlow的基础使用,SoftMax,交叉熵,Dropout,CNN,...

45112
来自专栏机器之心

业界 | 谷歌发布TensorFlow 1.3.0版本,新加多个分类器、回归器

3014

扫码关注云+社区