ElasticSearch优化系列三:索引过程

大家可能会遇到索引数据比较慢的过程。其实明白索引的原理就可以有针对性的进行优化。ES索引的过程到相对Lucene的索引过程多了分布式数据的扩展,而这ES主要是用tranlog进行各节点之间的数据平衡。所以从上我可以通过索引的settings进行第一优化:

"index.translog.flush_threshold_ops":"10000" "refresh_interval" : "1s"

这两个参数第一是到translog数据达到多少条进行平衡,默认为5000,而这个过程相对而言是比较浪费时间和资源的。所以我们可以将这个值调大一些还是设为-1关闭,进而手动进行translog平衡。第二参数是刷新频率,默认为1s是指索引在生命周期内定时刷新,一但有数据进来能refresh像lucene里面commit,我们知道当数据addDoucment后,还不能检索到要commit之后才能行数据的检索,所以可以将其关闭,在最初索引完后手动refresh之,然后将索引setting里面的index.refresh_interval参数按需求进行修改,从而可以提高索引过程效率。

另外的知道ES索引过程中如果有副本存在,数据也会马上同步到副本中去。我个人建议在索引过程中将副本数设为0,待索引完成后将副本数按需量改回来,这样也可以提高索引效率。

“number_of_replicas”: 0

其实检索速度快度与索引质量有很大的关系。而索引质量的好坏主要与以下几方面有关:

分片数

分片数是与检索速度非常相关的的指标,如果分片数过少或过多都会导致检索比较慢。分片数过多会导致检索时打开比较多的文件别外也会导致多台服务器之间通讯。而分片数过少会导致单个分片索引过大,所以检索速度慢。基于索引分片数=数据总量/单分片数的计算公式,在确定分片数之前需要进行单服务单索引单分片的测试,目前我们测试的结果单个分片的内容为10G。

分片(Shard):一个索引会分成多个分片存储,分片数量在索引建立后不可更改,推荐【分片数*副本数=集群数量】

确定分片的数量和副本的数量

ElasticSearch在创建索引数据时,最好指定相关的shards数量和replicas, 否则会使用服务器中的默认配置参数shards=5,replicas=1。

因为这两个属性的设置直接影响集群中索引和搜索操作的执行。假设你有足够的机器来持有碎片和副本,那么可以按如下规则设置这两个值:

1) 拥有更多的碎片可以提升索引执行能力,并允许通过机器分发一个大型的索引;

2) 拥有更多的副本能够提升搜索执行能力以及集群能力。

对于一个索引来说,number_of_shards只能设置一次,而number_of_replicas可以使用索引更新设置API在任何时候被增加或者减少。

这两个配置参数在配置文件的配置如下:

index.number_of_shards: 5 number_of_replicas: 1

Elastic官方文档建议:一个Node中一个索引最好不要多于三个shards.配置total_shards_per_node参数,限制每个index每个节点最多分配多少个发片.

http://www.open-open.com/doc/view/f240d61f8f7745098b4459c2483feb40

http://wenku.baidu.com/linkurl=bwD9mpebmQ28mqPj6Z0P1_A9bgFKnhIss8UrRA_Nsv7oTFuUEa9JgUdr9ynKc8OjWvd0pVLsp3tYZTFaNcxVt30EyFBCvkNflFGjMWcqsRq

副本数

副本数与索引的稳定性有比较大的关系,如果Node在非正常挂了,经常会导致分片丢失,为了保证这些数据的完整性,可以通过副本来解决这个问题。建议在建完索引后在执行Optimize后,马上将副本数调整过来。

分词

分词对于索引的影响可大可小,看自己把握。大家或许认为词库越多,分词效果越好,索引质量越好,其实不然。分词有很多算法,大部分基于词表进行分词。也就是说词表的大小决定索引大小。所以分词与索引膨涨率有直接关系。词表不应很多,而对文档相关特征性较强的即可。比如论文的数据进行建索引,分词的词表与论文的特征越相似,词表数量越小,在保证查全查准的情况下,索引的大小可以减少很多。索引大小减少了,那么检索速度也就提高了。

索引段

索引段即lucene中的segments概念,我们知道ES索引过程中会refresh和tranlog也就是说我们在索引过程中segments number不只一个。而segments number与检索是有直接联系的,segments number越多检索越慢,而将segments numbers 有可能的情况下保证为1,这将可以提高将近一半的检索速度。

https://www.elastic.co/guide/en/elasticsearch/guide/current/hardware.html

原文发布于微信公众号 - 人工智能LeadAI(atleadai)

原文发表时间:2017-11-09

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏数据结构与算法

P1115 最大子段和

题目描述 给出一段序列,选出其中连续且非空的一段使得这段和最大。 输入输出格式 输入格式: 输入文件maxsum1.in的第一行是一个正整数N,表示了序列的长度...

2715
来自专栏十月梦想

正则表达式之(exp),(?:exp),(?=exp),(?!exp)的区别

正则表达式通过使用括号将表达式分为不同的分组,识别的方法是通过从左至右搜寻左半括号,遇到第一个左半括号时,则该左半括号与对应的右半括号所包含的内容即为第一分组,...

633
来自专栏灯塔大数据

每周学点大数据 | No.28 表排序

No.28期 表排序 Mr. 王:前面我们讨论了一些基础磁盘算法,现在我们来讨论一些关于磁盘中图算法的问题。 通过对基础磁盘算法的学习,我们可以很容易地想到...

3147
来自专栏瓜大三哥

FPGA乒乓操作你了解吗? 还不赶快来看

1804
来自专栏Jack的Android之旅

疯狂java笔记之常用的内部排序

在计算机程序开发过程中,经常需要一组数据元素(或记录)按某个关键字进行排序,排序完成的序列可用于快速查找相关记录。

491
来自专栏linjinhe的专栏

论文笔记:MapReduce

1416
来自专栏用户2442861的专栏

典型的Top K算法_找出一个数组里面前K个最大数...或找出1亿个浮点数中最大的10000个...一个文本文件,找出前10个经常出现的词,但这次文件比较长,说是上亿行或十亿行,总之无法一次读入内存,

http://blog.163.com/xychenbaihu@yeah/blog/static/1322296552012821103039741/

542
来自专栏数据结构与算法

洛谷P1966 火柴排队(逆序对)

首先要保证权值最小,不难想到一种贪心策略,即把两个序列中rank相同的数放到同一个位置

761
来自专栏Java帮帮-微信公众号-技术文章全总结

八大排序算法图文介绍

八大排序算法图文介绍 排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排...

45911
来自专栏性能与架构

大数据运算模型 MapReduce 原理

MapReduce 是一个大数据集合的并行运算模型,由google提出,现在流行的hadoop中也使用了MapReduce作为计算模型 MapReduce 通俗...

3767

扫码关注云+社区