学界丨从一个失败的强化学习训练说起:OpenAI 探讨应该如何设计奖励函数?

AI科技评论按:在当下,强化学习算法以一种惊奇、不可思议的方式进入到了我们的视野中。AI 科技评论此前也做过不少相关的覆盖和报道,而在 OpenAI 的这篇文章中,Dario Amodei 与 Jack Clark 将会探讨一个失败的强化学习模型。这个模型为何失败?原因就在于你没有指明你的奖励函数。本文由 AI 科技评论进行编译。

我们最近在 OpenAI 上使用 Universe 来进行强化学习的实验。Universe是我们使用的一款软件,可以用它来测试和训练AI代理。实验显示,有时候我们在使用强化学习进行训练时,会出现一些问题。在接下来的例子当中,我们将针对这种情况进行说明:我们将一个模糊的奖励函数应用于一个强化学习的代理,而这导致了我们的代理对优先级的处理是错误的,这也就违反了背景的设定。

要想设计安全的AI系统,我们的算法就不能容忍这种情况的发生。我们必须确定目标,不能使我们的AI代理误解目标。

我们正在 CoastRunners 上训练我们的 AI 代理。正如大多数人类所理解的那样,游戏的目标是快速并且完美的在其他玩家之前完成游戏。在比赛过程中,CoastRunners 并不会对玩家的游戏进程进行奖励。相反,玩家会因为不断地完成目标而获得更高的分数。

我们假设玩家所获得的分数并不是玩家完成比赛的关键,对此我们在这个游戏当中设置一个内部基准,使用这个基准来衡量强化学习系统在这个竞赛中的表现。然而结果表明,强化学习代理为了获得更高分数,而不去完成游戏。这表明,在我们使用强化学习来训练代理玩这个游戏的时候,导致了意想不到的情况。

这个强化学习代理找到了一个孤立的咸水湖,它可以不断地绕圈并不断地完成三个任务来获得分数,当这个三个任务被重现之后,该代理就再次重复它的行动来完成这三个任务。不在乎一味的着火、冲撞其他的船只、进入错误的航道,我们所训练的代理通过使用这种方式来获得更高的分数,而不是使用正常的策略来完成比赛。我们的AI代理获得的分数,平均下来比其他的人类玩家高20%。

尽管在电子游戏的环境中,这种行为是无害并且有意思的,然而这种行为表明广泛存在于强化学习当中的一个问题:精准地使代理按照我们人类的意愿来做事,是很困难或者说是不可能的。我们得到的结果往往是,我们所训练出的是一个不完美而又易受影响的代理。在更广范围来说,它违背了基本的工程学原理,即系统必须是可信并且可以预测的。我们也在我们的实验论文《聚焦AI系统安全问题》中,进行了更深入的探讨。

我们该如何避免这些问题?除了谨慎地设计奖励函数之外,OpenAI 对一些研究方向的探索,可能会有助于减少使用那些错误的奖励函数。

  • 示范训练将会帮助我们避免使用直接指定奖励,相反它会帮助我们训练的代理学习如何模仿一个人来完成任务。在本例中,由于大部分的人类玩家都在试图完成游戏,因此我们的强化学习算法也会这样做。
  • 除此之外,或者说除了人类的示范作用之外,我们可以通过估计游戏进行的环节,或者以一种交互的方式来控制我们的代理,并将其视为人的反馈。非常小的评价反馈可能会帮助代理避免进入死循环。
  • 使用迁移学习的方式来训练众多相似的游戏,并推断对于这种游戏有一个共同的奖励函数,是有可能的。一个典型的游戏更多的是为了完成比赛,而不是为了获得游戏当中的特殊奖励,在基于这个事实的基础之上,我们的奖励函数会将完成游戏列为最高优先级。这看上去和人类玩游戏的方式一样。

但是这种方法可能存有弊端。例如,假如许多相似的环境拥有类似的奖励函数,我们也许能够将这种奖励函数应用到到一个新的环境。但是。这种应用有可能会引发错误。例如,我们使用许多竞赛类的游戏(这些游戏对于开出跑道的惩罚很小)来训练我们的代理,这将会使我们的代理错误的认为在一个全新的、代价更高的背景下,开出跑道也没什么大不了的。更微妙的是,假如应用这种奖励函数的过程涉及到了神经网络,在该网络中那些互斥的例子,有可能导致奖励函数在非正常的区域内来获得高额的奖励,这种现象并不是我们乐意见到的。

解决这类问题是复杂的。我们希望 Universe可以帮助我们快速地发现并解决这些新的错误,最终使我们的系统可信。AI 科技评论也将持续关注强化学习领域的相关内容。

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2016-12-29

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏杨熹的专栏

一文了解强化学习

虽然是周末,也保持充电,今天来看看强化学习,不过不是要用它来玩游戏,而是觉得它在制造业,库存,电商,广告,推荐,金融,医疗等与我们生活息息相关的领域也有很好的应...

3386
来自专栏AI科技评论

谷歌大脑撰文解析 AutoML:神经网络如何自行设计神经架构? | Google I/O 2017

在 Google I/O 大会上,谷歌公布了最新的机器学习算法——AutoML,随即,Quoc Le 与 Barret Aoph 大神在 Google Rese...

32110
来自专栏新智元

Facebook宣布机器翻译全面采用神经网络,现每日处理45亿次翻译

【新智元导读】Facebook 今天宣布,从使用基于短语的机器翻译模型改为使用神经网络系统来处理其社交网络后端每天的翻译请求,每天翻译超过 45 亿次。与基于短...

3308
来自专栏人工智能头条

人工智能进行连续决策的关键——强化学习入门指南

772
来自专栏AI研习社

开源神经网络框架Caffe2全介绍

我个人认为这是一份很值得分享的资料,因为 这应该是第一次使用全中文来讲解Caffe2和FB的AI应用的演讲 观看这次演讲不需要机器学习/神经网络,甚至计算机科学...

3183
来自专栏AI研习社

现在 tensorflow 和 mxnet 很火,是否还有必要学习 scikit-learn 等框架?

原题如下: 现在 tensorflow 和 mxnet 很火,那么对于深度学习(机器学习)准备入门的学生还有必要学习 scikit-learning,caffe...

41110
来自专栏BestSDK

新框架SyConn利用卷积神经,可模拟大脑思维模型

  然而,大脑中的大多数神经行为非常复杂,不同程度上涉及了人脑的多个区域。其功能性也并不局限于对特定大脑区域的划分。歧义无所不在。因此,当发生脑部疾病并出现功能...

3407
来自专栏专知

【下载】面向机器智能的TensorFlow实践书籍和代码

【导读】自2015年11月TensorFlow第一个开源版本发布以来,它便迅速跻身于最激动人心的机器学习库的行列,并在科研、产品和教育等领域正在得到日益广泛的应...

3438
来自专栏新智元

【大咖读论文】田渊栋评 DeepMind 深度强化学习的异步算法

【新智元导读】在ICML2016上,谷歌 DeepMind 有9篇论文被接收,新智元特邀Facebook 人工智能实验室研究员田渊栋对其中的《 深度增强学习的异...

3605
来自专栏人工智能

开源神经网络框架Caffe2全介绍

本文作者吴逸鸣,整理自作者在GTC China 2017大会上的演讲,首发于作者的知乎文章,AI研习社获其授权发布。 我个人认为这是一份很值得分享的资料,因为 ...

3105

扫码关注云+社区