零基础入门深度学习 | 第六章:长短时记忆网络(LSTM)

无论即将到来的是大数据时代还是人工智能时代,亦或是传统行业使用人工智能在云上处理大数据的时代,作为一个有理想有追求的程序员,不懂深度学习(Deep Learning)这个超热的技术,会不会感觉马上就out了? 现在救命稻草来了,《零基础入门深度学习》系列文章旨在讲帮助爱编程的你从零基础达到入门级水平。零基础意味着你不需要太多的数学知识,只要会写程序就行了,没错,这是专门为程序员写的文章。虽然文中会有很多公式你也许看不懂,但同时也会有更多的代码,程序员的你一定能看懂的(我周围是一群狂热的Clean Code程序员,所以我写的代码也不会很差)。

文章列表

零基础入门深度学习(1) - 感知器 零基础入门深度学习(2) - 线性单元和梯度下降

零基础入门深度学习(3) - 神经网络和反向传播算法

零基础入门深度学习(4) - 卷积神经网络

零基础入门深度学习(5) - 循环神经网络 零基础入门深度学习(6) - 长短时记忆网络(LSTM) 零基础入门深度学习(7) - 递归神经网络

往期回顾

在上一篇文章中,我们介绍了循环神经网络以及它的训练算法。我们也介绍了循环神经网络很难训练的原因,这导致了它在实际应用中,很难处理长距离的依赖。在本文中,我们将介绍一种改进之后的循环神经网络:长短时记忆网络(Long Short Term Memory Network, LSTM),它成功的解决了原始循环神经网络的缺陷,成为当前最流行的RNN,在语音识别、图片描述、自然语言处理等许多领域中成功应用。

但不幸的一面是,LSTM的结构很复杂,因此,我们需要花上一些力气,才能把LSTM以及它的训练算法弄明白。在搞清楚LSTM之后,我们再介绍一种LSTM的变体:GRU (Gated Recurrent Unit)。 它的结构比LSTM简单,而效果却和LSTM一样好,因此,它正在逐渐流行起来。最后,我们仍然会动手实现一个LSTM。

长短时记忆网络是啥

我们首先了解一下长短时记忆网络产生的背景。回顾一下零基础入门深度学习(5) - 循环神经网络中推导的,误差项沿时间反向传播的公式:

假设某轮训练中,各时刻的梯度以及最终的梯度之和如下图:

我们就可以看到,从上图的t-3时刻开始,梯度已经几乎减少到0了。那么,从这个时刻开始再往之前走,得到的梯度(几乎为零)就不会对最终的梯度值有任何贡献,这就相当于无论t-3时刻之前的网络状态h是什么,在训练中都不会对权重数组W的更新产生影响,也就是网络事实上已经忽略了t-3时刻之前的状态。这就是原始RNN无法处理长距离依赖的原因。

既然找到了问题的原因,那么我们就能解决它。从问题的定位到解决,科学家们大概花了7、8年时间。终于有一天,Hochreiter和Schmidhuber两位科学家发明出长短时记忆网络,一举解决这个问题。

其实,长短时记忆网络的思路比较简单。原始RNN的隐藏层只有一个状态,即h,它对于短期的输入非常敏感。那么,假如我们再增加一个状态,即c,让它来保存长期的状态,那么问题不就解决了么?如下图所示:

新增加的状态c,称为单元状态(cell state)。我们把上图按照时间维度展开:

上图仅仅是一个示意图,我们可以看出,在t时刻,LSTM的输入有三个:当前时刻网络的输入值Xt,上一时刻LSTM的输出值ht-1、以及上一时刻的单元状态Ct-1;LSTM的输出有两个:当前时刻LSTM输出值ht、和当前时刻的单元状态Ct。注意X,h,C都是向量。

LSTM的关键,就是怎样控制长期状态c。在这里,LSTM的思路是使用三个控制开关。第一个开关,负责控制继续保存长期状态c;第二个开关,负责控制把即时状态输入到长期状态c;第三个开关,负责控制是否把长期状态c作为当前的LSTM的输出。三个开关的作用如下图所示:

接下来,我们要描述一下,输出h和单元状态c的具体计算方法。

长短时记忆网络的前向计算

前面描述的开关是怎样在算法中实现的呢?这就用到了门(gate)的概念。门实际上就是一层全连接层,它的输入是一个向量,输出是一个0到1之间的实数向量。假设W是门的权重向量,b是偏置项,那么门可以表示为:

门的使用,就是用门的输出向量按元素乘以我们需要控制的那个向量。因为门的输出是0到1之间的实数向量,那么,当门输出为0时,任何向量与之相乘都会得到0向量,这就相当于啥都不能通过;输出为1时,任何向量与之相乘都不会有任何改变,这就相当于啥都可以通过。因为\sigma(也就是sigmoid函数)的值域是(0,1),所以门的状态都是半开半闭的。

LSTM用两个门来控制单元状态c的内容,一个是遗忘门(forget gate),它决定了上一时刻的单元状态Ct-1有多少保留到当前时刻Ct;另一个是输入门(input gate),它决定了当前时刻网络的输入Xt有多少保存到单元状态Ct。LSTM用输出门(output gate)来控制单元状态Ct有多少输出到LSTM的当前输出值ht。

我们先来看一下遗忘门:

上式中,Wf是遗忘门的权重矩阵,[ht-1,Xt]表示把两个向量连接成一个更长的向量,bf是遗忘门的偏置项,sigmoid函数。如果输入的维度是dx,隐藏层的维度是dh,单元状态的维度是dc,(通常dc=dh),则遗忘门的权重矩阵Wf维度是dcX(dh+dx)。事实上,权重矩阵Wf都是两个矩阵拼接而成的:一个是Wfh,它对应着输入项ht-1,其维度为dcXdh;一个是Wfx,它对应着输入项Xt,其维度为dcXdx,Wf可以写为:

下图显示了遗忘门的计算:

接下来看看输入门:

上式中,Wi是输入门的权重矩阵,bi是输入门的偏置项。下图表示了输入门的计算:

现在,我们计算当前时刻的单元状态ct。它是由上一次的单元状态Ct-1按元素乘以遗忘门ft,再用当前输入的单元状态\widetilde {c_{t}} 元素乘以输入门it,再将两个积加和产生的:

符号o表示按元素乘。下图是Ct的计算:

这样,我们就把LSTM关于当前的记忆\widetilde {c_{t}} 和长期的记忆Ct-1组合在一起,形成了新的单元状态Ct。由于遗忘门的控制,它可以保存很久很久之前的信息,由于输入门的控制,它又可以避免当前无关紧要的内容进入记忆。下面,我们要看看输出门,它控制了长期记忆对当前输出的影响:

下图表示输出门的计算:

LSTM最终的输出,是由输出门和单元状态共同确定的:

下图表示LSTM最终输出的计算:

式1到式6就是LSTM前向计算的全部公式。至此,我们就把LSTM前向计算讲完了。

长短时记忆网络的训练

熟悉我们这个系列文章的同学都清楚,训练部分往往比前向计算部分复杂多了。LSTM的前向计算都这么复杂,那么,可想而知,它的训练算法一定是非常非常复杂的。现在只有做几次深呼吸,再一头扎进公式海洋吧。

LSTM训练算法框架

LSTM的训练算法仍然是反向传播算法,对于这个算法,我们已经非常熟悉了。主要有下面三个步骤:

1、前向计算每个神经元的输出值,对于LSTM来说,即ft,it,ct,ot,ht,五个向量的值。计算方法已经在上一节中描述过了。

2、反向计算每个神经元的误差项\delta 值。与循环神经网络一样,LSTM误差项的反向传播也是包括两个方向:一个是沿时间的反向传播,即从当前t时刻开始,计算每个时刻的误差项;一个是将误差项向上一层传播。

3、根据相应的误差项,计算每个权重的梯度。

关于公式和符号的说明

首先,我们对推导中用到的一些公式、符号做一下必要的说明。

接下来的推导中,我们设定gate的激活函数为sigmoid函数,输出的激活函数为tanh函数。他们的导数分别为:

从上面可以看出,sigmoid和tanh函数的导数都是原函数的函数。这样,我们一旦计算原函数的值,就可以用它来计算出导数的值。

LSTM需要学习的参数共有8组,分别是:遗忘门的权重矩阵Wf和偏置项bf、输入门的权重矩阵Wi和偏置项bi、输出门的权重矩阵Wo和偏置项bo、以及计算单元状态的权重矩阵W和偏置项bc。因为权重矩阵的两部分在反向传播中使用不同的公式,因此在后续的推导中,权重矩阵Wf,Wi,Wc,Wo、都将被写为分开的两个矩阵:Wfh,Wfx,Wih,Wix,Woh、Wox,Wch,Wcx。

我们解释一下按元素乘o符号。当o作用于两个向量时,运算如下:

当o作用于一个向量和一个矩阵时,运算如下:

当o作用于两个矩阵时,两个矩阵对应位置的元素相乘。按元素乘可以在某些情况下简化矩阵和向量运算。例如,当一个对角矩阵右乘一个矩阵时,相当于用对角矩阵的对角线组成的向量按元素乘那个矩阵:

当一个行向量右乘一个对角矩阵时,相当于这个行向量按元素乘那个矩阵对角线组成的向量:

上面这两点,在我们后续推导中会多次用到。

在t时刻,LSTM的输出值为ht,我们定义t时刻的误差项\delta _{t} 为:

注意,和前面几篇文章不同,我们这里假设误差项是损失函数对输出值的导数,而不是对加权输入 的导数。因为LSTM有四个加权输入,分别对应ft,it,ct,ot,我们希望往上一层传递一个误差项而不是四个。但我们仍然需要定义出这四个加权输入net^{l}_{t} ,以及他们对应的误差项。

误差项沿时间的反向传递

沿时间反向传递误差项,就是要计算出t-1时刻的误差项\delta _{t-1}

我们知道,

是一个Jacobian矩阵。如果隐藏层h的维度是N的话,那么它就是一个NXN矩阵。为了求出它,我们列出ht的计算公式,即前面的式6和式4:

显然,ot,ft,it,\widetilde {c_{t}} 都是ht-1的函数,那么,利用全导数公式可得:

下面,我们要把式7中的每个偏导数都求出来。根据式6,我们可以求出:

根据式4,我们可以求出:

因为:

我们很容易得出:

将上述偏导数带入到式7,我们得到:

根据、

的定义,可知:

式8到式12就是将误差沿时间反向传播一个时刻的公式。有了它,我们可以写出将误差项向前传递到任意k时刻的公式:

将误差项传递到上一层

我们假设当前为第l层,定义l-1层的误差项是误差函数对l-1层加权输入的导数,即:

本次LSTM的输入Xt由下面的公式计算:

上式中,f^{l-1} 表示第l-1层的激活函数。

因为,

都是Xt的函数,Xt又是net^{l-1}_{t} 的函数,因此,要求出E对net^{l-1}_[t] 的导数,就需要使用全导数公式:

式14就是将误差传递到上一层的公式。

权重梯度的计算

对于Wfh,Wih,Woh,Wch的权重梯度,我们知道它的梯度是各个时刻梯度之和(证明过程请参考文章《零基础入门深度学习 | 第五章:循环神经网络》),我们首先求出它们在t时刻的梯度,然后再求出他们最终的梯度。

我们已经求得了误差项

、很容易求出t时刻的Woh,Wih,Wfh,Wch:

将各个时刻的梯度加在一起,就能得到最终的梯度:

对于偏置项bf,bi,bc,bo的梯度,也是将各个时刻的梯度加在一起。下面是各个时刻的偏置项梯度:

下面是最终的偏置项梯度,即将各个时刻的偏置项梯度加在一起:

对于Wfx,Wix,Wcx,Wox的权重梯度,只需要根据相应的误差项直接计算即可:

以上就是LSTM的训练算法的全部公式。因为这里面存在很多重复的模式,仔细看看,会发觉并不是太复杂。

当然,LSTM存在着相当多的变体,读者可以在互联网上找到很多资料。因为大家已经熟悉了基本LSTM的算法,因此理解这些变体比较容易,因此本文就不再赘述了。

长短时记忆网络的实现

完整代码请参考GitHub: https://github.com/hanbt/learn_dl/blob/master/lstm.py (python2.7)

在下面的实现中,LSTMLayer的参数包括输入维度、输出维度、隐藏层维度,单元状态维度等于隐藏层维度。gate的激活函数为sigmoid函数,输出的激活函数为tanh。

激活函数的实现

我们先实现两个激活函数:sigmoid和tanh。

class SigmoidActivator(object):
    def forward(self, weighted_input):
        return 1.0 / (1.0 + np.exp(-weighted_input))
    def backward(self, output):
        return output * (1 - output)
class TanhActivator(object):
    def forward(self, weighted_input):
        return 2.0 / (1.0 + np.exp(-2 * weighted_input)) - 1.0
    def backward(self, output):
        return 1 - output * output

LSTM初始化

和前两篇文章代码架构一样,我们把LSTM的实现放在LstmLayer类中。

根据LSTM前向计算和方向传播算法,我们需要初始化一系列矩阵和向量。这些矩阵和向量有两类用途,一类是用于保存模型参数,例如Wf,Wi,Wo,Wc,bf,bi,bo,bc;另一类是保存各种中间计算结果,以便于反向传播算法使用,它们包括ht,ft,it,ot,ct,

以及各个权重对应的梯度。

在构造函数的初始化中,只初始化了与forward计算相关的变量,与backward相关的变量没有初始化。这是因为构造LSTM对象的时候,我们还不知道它未来是用于训练(既有forward又有backward)还是推理(只有forward)。

class LstmLayer(object):
    def __init__(self, input_width, state_width, 
                 learning_rate):
        self.input_width = input_width
        self.state_width = state_width
        self.learning_rate = learning_rate
        # 门的激活函数
        self.gate_activator = SigmoidActivator()
        # 输出的激活函数
        self.output_activator = TanhActivator()
        # 当前时刻初始化为t0
        self.times = 0       
        # 各个时刻的单元状态向量c
        self.c_list = self.init_state_vec()
        # 各个时刻的输出向量h
        self.h_list = self.init_state_vec()
        # 各个时刻的遗忘门f
        self.f_list = self.init_state_vec()
        # 各个时刻的输入门i
        self.i_list = self.init_state_vec()
        # 各个时刻的输出门o
        self.o_list = self.init_state_vec()
        # 各个时刻的即时状态c~
        self.ct_list = self.init_state_vec()
        # 遗忘门权重矩阵Wfh, Wfx, 偏置项bf
        self.Wfh, self.Wfx, self.bf = (
            self.init_weight_mat())
        # 输入门权重矩阵Wfh, Wfx, 偏置项bf
        self.Wih, self.Wix, self.bi = (
            self.init_weight_mat())
        # 输出门权重矩阵Wfh, Wfx, 偏置项bf
        self.Woh, self.Wox, self.bo = (
            self.init_weight_mat())
        # 单元状态权重矩阵Wfh, Wfx, 偏置项bf
        self.Wch, self.Wcx, self.bc = (
            self.init_weight_mat())
    def init_state_vec(self):
        '''
        初始化保存状态的向量
        '''
        state_vec_list = []
        state_vec_list.append(np.zeros(
            (self.state_width, 1)))
        return state_vec_list
    def init_weight_mat(self):
        '''
        初始化权重矩阵
        '''
        Wh = np.random.uniform(-1e-4, 1e-4,
            (self.state_width, self.state_width))
        Wx = np.random.uniform(-1e-4, 1e-4,
            (self.state_width, self.input_width))
        b = np.zeros((self.state_width, 1))
        return Wh, Wx, b

前向计算的实现

forward方法实现了LSTM的前向计算:

    def forward(self, x):
        '''
        根据式1-式6进行前向计算
        '''
        self.times += 1
        # 遗忘门
        fg = self.calc_gate(x, self.Wfx, self.Wfh, 
            self.bf, self.gate_activator)
        self.f_list.append(fg)
        # 输入门
        ig = self.calc_gate(x, self.Wix, self.Wih,
            self.bi, self.gate_activator)
        self.i_list.append(ig)
        # 输出门
        og = self.calc_gate(x, self.Wox, self.Woh,
            self.bo, self.gate_activator)
        self.o_list.append(og)
        # 即时状态
        ct = self.calc_gate(x, self.Wcx, self.Wch,
            self.bc, self.output_activator)
        self.ct_list.append(ct)
        # 单元状态
        c = fg * self.c_list[self.times - 1] + ig * ct
        self.c_list.append(c)
        # 输出
        h = og * self.output_activator.forward(c)
        self.h_list.append(h)
    def calc_gate(self, x, Wx, Wh, b, activator):
        '''
        计算门
        '''
        h = self.h_list[self.times - 1] # 上次的LSTM输出
        net = np.dot(Wh, h) + np.dot(Wx, x) + b
        gate = activator.forward(net)
        return gate

从上面的代码我们可以看到,门的计算都是相同的算法,而门和 \widetilde {c_{t}} 的计算仅仅是激活函数不同。因此我们提出了calc_gate方法,这样减少了很多重复代码。

反向传播算法的实现

backward方法实现了LSTM的反向传播算法。需要注意的是,与backword相关的内部状态变量是在调用backward方法之后才初始化的。这种延迟初始化的一个好处是,如果LSTM只是用来推理,那么就不需要初始化这些变量,节省了很多内存。

    def backward(self, x, delta_h, activator):
        '''
        实现LSTM训练算法
        '''
        self.calc_delta(delta_h, activator)
        self.calc_gradient(x)

算法主要分成两个部分,一部分使计算误差项:

    def calc_delta(self, delta_h, activator):
        # 初始化各个时刻的误差项
        self.delta_h_list = self.init_delta()  # 输出误差项
        self.delta_o_list = self.init_delta()  # 输出门误差项
        self.delta_i_list = self.init_delta()  # 输入门误差项
        self.delta_f_list = self.init_delta()  # 遗忘门误差项
        self.delta_ct_list = self.init_delta() # 即时输出误差项
        # 保存从上一层传递下来的当前时刻的误差项
        self.delta_h_list[-1] = delta_h
        # 迭代计算每个时刻的误差项
        for k in range(self.times, 0, -1):
            self.calc_delta_k(k)
    def init_delta(self):
        '''
        初始化误差项
        '''
        delta_list = []
        for i in range(self.times + 1):
            delta_list.append(np.zeros(
                (self.state_width, 1)))
        return delta_list
    def calc_delta_k(self, k):
        '''
        根据k时刻的delta_h,计算k时刻的delta_f、
        delta_i、delta_o、delta_ct,以及k-1时刻的delta_h
        '''
        # 获得k时刻前向计算的值
        ig = self.i_list[k]
        og = self.o_list[k]
        fg = self.f_list[k]
        ct = self.ct_list[k]
        c = self.c_list[k]
        c_prev = self.c_list[k-1]
        tanh_c = self.output_activator.forward(c)
        delta_k = self.delta_h_list[k]
        # 根据式9计算delta_o
        delta_o = (delta_k * tanh_c * 
            self.gate_activator.backward(og))
        delta_f = (delta_k * og * 
            (1 - tanh_c * tanh_c) * c_prev *
            self.gate_activator.backward(fg))
        delta_i = (delta_k * og * 
            (1 - tanh_c * tanh_c) * ct *
            self.gate_activator.backward(ig))
        delta_ct = (delta_k * og * 
            (1 - tanh_c * tanh_c) * ig *
            self.output_activator.backward(ct))
        delta_h_prev = (
                np.dot(delta_o.transpose(), self.Woh) +
                np.dot(delta_i.transpose(), self.Wih) +
                np.dot(delta_f.transpose(), self.Wfh) +
                np.dot(delta_ct.transpose(), self.Wch)
            ).transpose()
        # 保存全部delta值
        self.delta_h_list[k-1] = delta_h_prev
        self.delta_f_list[k] = delta_f
        self.delta_i_list[k] = delta_i
        self.delta_o_list[k] = delta_o
        self.delta_ct_list[k] = delta_ct

另一部分是计算梯度:

    def calc_gradient(self, x):
        # 初始化遗忘门权重梯度矩阵和偏置项
        self.Wfh_grad, self.Wfx_grad, self.bf_grad = (
            self.init_weight_gradient_mat())
        # 初始化输入门权重梯度矩阵和偏置项
        self.Wih_grad, self.Wix_grad, self.bi_grad = (
            self.init_weight_gradient_mat())
        # 初始化输出门权重梯度矩阵和偏置项
        self.Woh_grad, self.Wox_grad, self.bo_grad = (
            self.init_weight_gradient_mat())
        # 初始化单元状态权重梯度矩阵和偏置项
        self.Wch_grad, self.Wcx_grad, self.bc_grad = (
            self.init_weight_gradient_mat())
       # 计算对上一次输出h的权重梯度
        for t in range(self.times, 0, -1):
            # 计算各个时刻的梯度
            (Wfh_grad, bf_grad,
            Wih_grad, bi_grad,
            Woh_grad, bo_grad,
            Wch_grad, bc_grad) = (
                self.calc_gradient_t(t))
            # 实际梯度是各时刻梯度之和
            self.Wfh_grad += Wfh_grad
            self.bf_grad += bf_grad
            self.Wih_grad += Wih_grad
            self.bi_grad += bi_grad
            self.Woh_grad += Woh_grad
            self.bo_grad += bo_grad
            self.Wch_grad += Wch_grad
            self.bc_grad += bc_grad
            print '-----%d-----' % t
            print Wfh_grad
            print self.Wfh_grad
        # 计算对本次输入x的权重梯度
        xt = x.transpose()
        self.Wfx_grad = np.dot(self.delta_f_list[-1], xt)
        self.Wix_grad = np.dot(self.delta_i_list[-1], xt)
        self.Wox_grad = np.dot(self.delta_o_list[-1], xt)
        self.Wcx_grad = np.dot(self.delta_ct_list[-1], xt)
    def init_weight_gradient_mat(self):
        '''
        初始化权重矩阵
        '''
        Wh_grad = np.zeros((self.state_width,
            self.state_width))
        Wx_grad = np.zeros((self.state_width,
            self.input_width))
        b_grad = np.zeros((self.state_width, 1))
        return Wh_grad, Wx_grad, b_grad
    def calc_gradient_t(self, t):
        '''
        计算每个时刻t权重的梯度
        '''
        h_prev = self.h_list[t-1].transpose()
        Wfh_grad = np.dot(self.delta_f_list[t], h_prev)
        bf_grad = self.delta_f_list[t]
        Wih_grad = np.dot(self.delta_i_list[t], h_prev)
        bi_grad = self.delta_f_list[t]
        Woh_grad = np.dot(self.delta_o_list[t], h_prev)
        bo_grad = self.delta_f_list[t]
        Wch_grad = np.dot(self.delta_ct_list[t], h_prev)
        bc_grad = self.delta_ct_list[t]
        return Wfh_grad, bf_grad, Wih_grad, bi_grad, \
               Woh_grad, bo_grad, Wch_grad, bc_grad

梯度下降算法的实现

下面是用梯度下降算法来更新权重:

    def update(self):
        '''
        按照梯度下降,更新权重
        '''
        self.Wfh -= self.learning_rate * self.Whf_grad
        self.Wfx -= self.learning_rate * self.Whx_grad
        self.bf -= self.learning_rate * self.bf_grad
        self.Wih -= self.learning_rate * self.Whi_grad
        self.Wix -= self.learning_rate * self.Whi_grad
        self.bi -= self.learning_rate * self.bi_grad
        self.Woh -= self.learning_rate * self.Wof_grad
        self.Wox -= self.learning_rate * self.Wox_grad
        self.bo -= self.learning_rate * self.bo_grad
        self.Wch -= self.learning_rate * self.Wcf_grad
        self.Wcx -= self.learning_rate * self.Wcx_grad
        self.bc -= self.learning_rate * self.bc_grad

梯度检查的实现

和RecurrentLayer一样,为了支持梯度检查,我们需要支持重置内部状态:

    def reset_state(self):
        # 当前时刻初始化为t0
        self.times = 0       
        # 各个时刻的单元状态向量c
        self.c_list = self.init_state_vec()
        # 各个时刻的输出向量h
        self.h_list = self.init_state_vec()
        # 各个时刻的遗忘门f
        self.f_list = self.init_state_vec()
        # 各个时刻的输入门i
        self.i_list = self.init_state_vec()
        # 各个时刻的输出门o
        self.o_list = self.init_state_vec()
        # 各个时刻的即时状态c~
        self.ct_list = self.init_state_vec()

最后,是梯度检查的代码:

def data_set():
    x = [np.array([[1], [2], [3]]),
         np.array([[2], [3], [4]])]
    d = np.array([[1], [2]])
    return x, d
def gradient_check():
    '''
    梯度检查
    '''
    # 设计一个误差函数,取所有节点输出项之和
    error_function = lambda o: o.sum()
    lstm = LstmLayer(3, 2, 1e-3)
    # 计算forward值
    x, d = data_set()
    lstm.forward(x[0])
    lstm.forward(x[1])
    # 求取sensitivity map
    sensitivity_array = np.ones(lstm.h_list[-1].shape,
                                dtype=np.float64)
    # 计算梯度
    lstm.backward(x[1], sensitivity_array, IdentityActivator())
    # 检查梯度
    epsilon = 10e-4
    for i in range(lstm.Wfh.shape[0]):
        for j in range(lstm.Wfh.shape[1]):
            lstm.Wfh[i,j] += epsilon
            lstm.reset_state()
            lstm.forward(x[0])
            lstm.forward(x[1])
            err1 = error_function(lstm.h_list[-1])
            lstm.Wfh[i,j] -= 2*epsilon
            lstm.reset_state()
            lstm.forward(x[0])
            lstm.forward(x[1])
            err2 = error_function(lstm.h_list[-1])
            expect_grad = (err1 - err2) / (2 * epsilon)
            lstm.Wfh[i,j] += epsilon
            print 'weights(%d,%d): expected - actural %.4e - %.4e' % (
                i, j, expect_grad, lstm.Wfh_grad[i,j])
    return lstm

我们只对Wfh做了检查,读者可以自行增加对其他梯度的检查。下面是某次梯度检查的结果:

GRU

前面我们讲了一种普通的LSTM,事实上LSTM存在很多变体,许多论文中的LSTM都或多或少的不太一样。在众多的LSTM变体中,GRU (Gated Recurrent Unit)也许是最成功的一种。它对LSTM做了很多简化,同时却保持着和LSTM相同的效果。因此,GRU最近变得越来越流行。

GRU对LSTM做了两个大改动:

1、将输入门、遗忘门、输出门变为两个门:更新门(Update Gate)Zt和重置门(Reset Gate)rt.

2、将单元状态与输出合并为一个状态:h。

GRU的前向计算公式为:

下图是GRU的示意图:

GRU的训练算法比LSTM简单一些,留给读者自行推导,本文就不再赘述了。

小结

至此,LSTM——也许是结构最复杂的一类神经网络——就讲完了,相信拿下前几篇文章的读者们搞定这篇文章也不在话下吧!现在我们已经了解循环神经网络和它最流行的变体——LSTM,它们都可以用来处理序列。

但是,有时候仅仅拥有处理序列的能力还不够,还需要处理比序列更为复杂的结构(比如树结构),这时候就需要用到另外一类网络:递归神经网络(Recursive Neural Network),巧合的是,它的缩写也是RNN。在下一篇文章中,我们将介绍递归神经网络和它的训练算法。现在,漫长的烧脑暂告一段落,休息一下吧:)

参考资料

1、CS224d: Deep Learning for Natural Language Processing

2、Understanding LSTM Networks

3、LSTM Forward and Backward Pass

原文发布于微信公众号 - 人工智能LeadAI(atleadai)

原文发表时间:2017-11-29

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏程序生活

机器学习(九)梯度下降算法1 梯度2 梯度下降法

1 梯度 1.1 定义 梯度:是一个矢量,其方向上的方向导数最大,其大小正好是此最大方向导数。 关于梯度的更多介绍请看:如何直观形象的理解方向导数与梯度以及...

2917
来自专栏机器学习算法与Python学习

多层网络与反向传播算法详解

本篇文章是感知机详解的继续,看本篇文章前最好先看上一篇文章或者有响应的神经网络学习与应用基础。 ? 图1 多层前馈网络的决策区域 这里显示的网络是用来训练识别1...

2517
来自专栏jeremy的技术点滴

机器学习课程_笔记07

3357
来自专栏fangyangcoder

Andrew Ng机器学习课程笔记(四)之神经网络

http://www.cnblogs.com/fydeblog/p/7365730.html

391
来自专栏张俊红

朴素贝叶斯详解

总第78篇 一、统计知识 01|随机事件: 1、概念 随机事件是在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件(简称事件...

2626
来自专栏灯塔大数据

塔荐 | 神经网络训练方法详解

前言 本文详细描述了动量法等当前十分流行的学习算法。此外,本系列将在后面介绍 Adam 和遗传算法等其它重要的神经网络训练方法。 I. 简介 本文是作者关于如何...

3168
来自专栏智能算法

深度学习三人行(第4期)---- TF训练DNN之进阶

2028
来自专栏机器之心

教程 | 如何使用深度学习执行文本实体提取

选自TowardsDataScience 作者:Dhanoop Karunakaran等 机器之心编译 参与:Tianci LIU、路 本文介绍了如何使用深度学...

3446
来自专栏人工智能LeadAI

译文 | 与TensorFlow的第一次接触 第五章:多层神经网络

本章中,我们继续使用之前章节中的MNIST数字识别问题,与读者一起编码实现一个简单的深度学习神经网络。 如我们所了解的,一个深度学习神经网络由相互叠加的多层组成...

3244
来自专栏人工智能LeadAI

反向传播(backpropagation)算法 | 深度学习笔记

接上一篇(多层感知机(MLP)与神经网络结构 | 深度学习笔记)的最后,我们要训练多层网络的时候,最后关键的部分就是求梯度啦。纯数学方法几乎是不可能的,那么反向...

26710

扫描关注云+社区