开发 | TensorFlow 1.0 要来了!它将带来哪些革命性变化?

在发布逾一周年之际,TensorFlow 终于将迎来史上最重大更新:TensorFlow 1.0。

对于不熟悉开源框架的读者,TensorFlow 是谷歌 2015 年底推出的深度学习框架,在开发者社区享有盛誉。去年,它已成为 GitHub 最受欢迎的机器学习开源项目。因其高度普及率,尤其是在 Python 生态圈中,TensorFlow 的功能变化会对全世界的机器学习开发者造成重大影响。

本月初,谷歌公布了 TensorFlow 1.0.0-alpha ,即 TensorFlow 1.0 的第一个“草稿”版本。近日,新的候选版本 TensorFlow 1.0.0-rc0 被发布出来,披露了更多技术细节,标志着我们离 “完全体”的 TensorFlow 1.0 更近一步。

AI 科技评论消息,1.0 版本不仅为 TensorFlow 机器学习函数库带来多重升级,而且为 Python 和 Java 用户使用 TensorFlow 做开发降低了难度。另外,新版本的漏洞修补也得到了改善。更有意思的是,由于对 TensorFlow 计算做优化的新编译器,智能手机上运行基于 TensorFlow 的机器学习 APP 将成为可能

强化对 Python 支持,加入 Java API

由于 Python 是最常用的机器学习开发语言,TensorFlow 1.0 对 Python 交互作了重点改进——Python API 得到升级,TensorFlow 使用的语法和隐喻(syntax、metaphor)与 Python 的能更好吻合,提升两者之间的一致性。

AI 科技评论获知,该升级带来了一个坏消息:现有 Python 应用将无法兼容。TensorFlow 开发者们已经发布了一个能把旧 TensorFlow API 转化为新格式的脚本,但是该脚本无法解决所有问题——很多情况下,开发者需要人工调整脚本。

TensorFlow 现已支持与 Python 3 兼容的 Docker 镜像。对于所有 Python 用户,TensorFlow 现在可以通过 Python 的原生软件包管理器 pip 来安装。这是提升 TensorFlow 可用性的关键一步,尤其对于那些使用原生 Python 应用分发、而非使用数据科学专用体系(比如 Anaconda)的用户。

Java 是机器学习领域的另一个主流语言平台。此前,TensorFlow 并没有对其支持,更没有一系列对 Java 的捆绑,而新的 1.0 版本引入了一个 Java API。但雷锋网(公众号:雷锋网)提醒,它还远未成熟,随时可能会有变化。而且,你需要 Linux 或者 Mac OS 平台上的来源来开发 TensorFlow(你可以把这作为 Windows 端 TensorFlow 是二等公民的另一个证据)。

使 TensorFlow 在移动设备上运行

TensorFlow 1.0 的最大变化或许不是新语言支持或者新算法,而是 XLA —— 全称 Accelerated Linear Algebra,意为加速线性代数,是一个针对 TensorFlow 中线性代数运算的试验性质编译器。它通过生成既能运行于 GPU、又能在 CPU 运行的机器代码,来加速数学计算。目前, XLA 只支持英伟达 GPU,但这与当下机器学习应用对 GPU 支持的现状是一致的。

XLA 提升了 TensorFlow 的移动性。现有的、未经调整的 TensorFlow 程序只需创建一个后端即可在新硬件平台上运行。这么做的意义非同寻常 ——此前, IBM 就为它的 PowerAI 机器学习硬件解决方案加入了对 TensorFlow 的支持,前者由 Power8 CPU 和 GPU 混合运行。

TensorFlow的工程师已经缩减了它的整体内存占用和 APP 的存储空间占用。这些优化对各类硬件运行环境都有好处,但对于移动平台尤其重要。此前的 TensorFlow 版本已经加入了对安卓、iOS 和 Raspberry Pi(树莓派微型电脑)硬件平台的支持,使得 TensorFlow 能在这类设备上处理诸如图像分类之类的任务。

关于机器学习的讨论往往会涉及高端硬件——机器学习,尤其是深度学习,是发展高端硬件的重要推动力量,不管是定制 CPU、GPU 阵列、FPGA 还是支持云端坏境的规模化硬件。但有理论认为,创造出能在普通智能手机上运行的机器学习模型,而无需 24 小时每时每刻的云端支持,将会孵化出一系列新型应用。这便是 TensorFlow 1.0 的野心之一。

via infoworld

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2017-01-31

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏量子位

谷歌终于推出TensorFlow Lite,实现在移动设备端部署AI

安妮 编译整理 量子位 出品 | 公众号 QbitAI 还得从半年前说起。 今年5月的谷歌I/O大会上,安卓工程副总裁Dave Burke宣布将推出一个专门为移...

2959

如何使用Google工作表创建杀手级数据仪表板

每家公司都围绕目标开展业务并使用关键绩效指标(KPI)跟踪实现这些目标的进展情况。对于每个目标,团队应能随时轻松地回答以下两个主要问题:

1336
来自专栏iOSDevLog

人工智能,我来了

3298
来自专栏新智元

Google Play:使用深度学习,根据用户环境实现个性化 App 推荐

【新智元导读】本文是 Google Play 的 “App 发现”系列文章的第二篇,谷歌 App发现团队讨论了如何使用深度学习,根据用户曾经下载过的 App 和...

4598
来自专栏新智元

【并非愚人节】科学家创建可自我复制的神经网络,AI像生命体一样繁殖

1493
来自专栏AI研习社

Tensorflow的迭代更新 | Tensorflow 最全资料汇总【1】

【AI研习社】关注AI前沿、开发技巧及技术教程等方面的内容。欢迎技术开发类文章、视频教程等内容投稿,邮件发送至:zhangxian@leiphone.com 谷...

3199
来自专栏CDA数据分析师

机器学习和 AI 领域必须了解的工具

? 关于数据科学,工具可能并不是那么热门的话题。人们似乎更关注最新的聊天机器人技术以及深度学习框架。 但这显然是不合理的。为什么不花些时间,挑选合适的...

16210
来自专栏数据科学与人工智能

【陆勤推荐】人工智能和机器学习领域中有趣的开源项目

本文简要介绍了10款 Quora上网友推荐的 人工智能和机器学习领域方面的开源项目。 GraphLab   GraphLab是一种新的面向机器学习的并行框架。G...

1978
来自专栏机器之心

资源 | 免费乳腺癌X光片检测:网友50块GPU搭建AI医疗图像早筛平台

去年的时候,我一个在芝加哥比我小几级的南京大学校友去世了。乳腺癌,发现得晚了,才 34 岁,留下了一个 4 岁的孩子。非常可惜。想想能不能做点什么事情可以帮助大...

920
来自专栏新智元

【干货】4月Python 热门推荐Top 10

1354

扫描关注云+社区