机器学习之分类性能度量指标 : ROC曲线、AUC值、正确率、召回率

在分类任务中,人们总是喜欢基于错误率来衡量分类器任务的成功程度。错误率指的是在所有测试样例中错分的样例比例。实际上,这样的度量错误掩盖了样例如何被分错的事实。在机器学习中,有一个普遍适用的称为混淆矩阵(confusion matrix)(https://en.wikipedia.org/wiki/Confusion_matrix)的工具,它可以帮助人们更好地了解分类中的错误。

比如有这样一个在房子周围可能发现的动物类型的预测,这个预测的三类问题的混淆矩阵如下表所示:

一个三类问题的混淆矩阵

利用混淆矩阵可以充分理解分类中的错误了。如果混淆矩阵中的非对角线元素均为0,就会得到一个近乎完美的分类器。

在接下来的讨论中,将以经典的二分类问题为例,对于多分类类比推断。

二分类问题在机器学习中是一个很常见的问题,经常会用到。ROC (Receiver Operating Characteristic) 曲线和 AUC (Area Under the Curve) 值常被用来评价一个二值分类器 (binary classifier)(https://en.wikipedia.org/wiki/Binary_classification) 的优劣。之前做医学图像计算机辅助肺结节检测时,在评定模型预测结果时,就用到了ROC和AUC,这里简单介绍一下它们的特点,以及更为深入地,讨论如何作出ROC曲线图和计算AUC值。

1、医学图像识别二分类问题

针对一个二分类问题,我们将实例分成正类(positive)和负类(negative)两种。

例如:在肺结节计算机辅助识别这一问题上,一幅肺部CT图像中有肺结节被认为是阳性(positive),没有肺结节被认为是阴性(negative)。对于部分有肺结节的示意图如下:

常见肺结节示意图

所以在实际检测时,就会有如下四种情况:

(1) 真阳性(True Positive,TP):检测有结节,且实际有结节;正确肯定的匹配数目;

(2) 假阳性(False Positive,FP):检测有结节,但实际无结节;误报,给出的匹配是不正确的;

(3) 真阴性(True Negative,TN):检测无结节,且实际无结节;正确拒绝的非匹配数目;

(4) 假阴性(False Negative,FN):检测无结节,但实际有结节;漏报,没有正确找到的匹配的数目。

详细图解(原创,转载请标明出处)如下:

更多参数详细信息及其意义请参考 Wikipedia -> [Confusion_matrix](https://en.wikipedia.org/wiki/Sensitivity_and_specificity#Confusion_matrix).

上图中涉及到很多相关概念及参数,详细请见Wiki上的定义及其混淆矩阵(https://en.wikipedia.org/wiki/Sensitivity_and_specificity#Confusion_matrix),这里整理肺结节识别中的几个主要参数指标如下:

  • 正确率(Precision):
  • 真阳性率(True Positive Rate,TPR),灵敏度(Sensitivity),召回率(Recall):
  • 真阴性率(True Negative Rate,TNR),特异度(Specificity):
  • 假阴性率(False Negatice Rate,FNR),漏诊率( = 1 - 灵敏度):
  • 假阳性率(False Positice Rate,FPR),误诊率( = 1 - 特异度):
  • 阳性似然比 = 真阳性率 / 假阳性率 = 灵敏度 / (1 - 特异度)(https://en.wikipedia.org/wiki/Likelihood_ratios_in_diagnostic_testing#positive_likelihood_ratio)
  • 阴性似然比 = 假阴性率 / 真阴性率 = (1 - 灵敏度) / 特异度(https://en.wikipedia.org/wiki/Likelihood_ratios_in_diagnostic_testing#negative_likelihood_ratio)
  • Youden指数 = 灵敏度 + 特异度 - 1 = 真阳性率 - 假阳性率(https://baike.baidu.com/item/%E7%BA%A6%E7%99%BB%E6%8C%87%E6%95%B0/7084211?fr=aladdin)

2、ROC曲线

ROC曲线:接收者操作特征曲线(receiver operating characteristic curve)(https://en.wikipedia.org/wiki/Receiver_operating_characteristic),是反映敏感性和特异性连续变量的综合指标,roc曲线上每个点反映着对同一信号刺激的感受性。

对于分类器,或者说分类算法,评价指标主要有precision,recall,F-score等,以及这里要讨论的ROC和AUC。下图是一个ROC曲线的示例:

横坐标:1-Specificity,伪正类率(False positive rate, FPR),预测为正但实际为负的样本占所有负例样本的比例;

纵坐标:Sensitivity,真正类率(True positive rate, TPR),预测为正且实际为正的样本占所有正例样本的比例。

在一个二分类模型中,假设采用逻辑回归分类器,其给出针对每个实例为正类的概率,那么通过设定一个阈值如0.6,概率大于等于0.6的为正类,小于0.6的为负类。对应的就可以算出一组(FPR,TPR),在平面中得到对应坐标点。随着阈值的逐渐减小,越来越多的实例被划分为正类,但是这些正类中同样也掺杂着真正的负实例,即TPR和FPR会同时增大。阈值最大时,对应坐标点为(0,0),阈值最小时,对应坐标点(1,1)。

如下面这幅图,(a)图中实线为ROC曲线,线上每个点对应一个阈值。

ROC曲线和它相关的比率

(a) 理想情况下,TPR应该接近1,FPR应该接近0。ROC曲线上的每一个点对应于一个threshold,对于一个分类器,每个threshold下会有一个TPR和FPR。比如Threshold最大时,TP=FP=0,对应于原点;Threshold最小时,TN=FN=0,对应于右上角的点(1,1)。

(b) P和N得分不作为特征间距离d的一个函数,随着阈值theta增加,TP和FP都增加。

  • 横轴FPR:1-TNR,1-Specificity,FPR越大,预测正类中实际负类越多。
  • 纵轴TPR:Sensitivity(正类覆盖率),TPR越大,预测正类中实际正类越多。
  • 理想目标:TPR=1,FPR=0,即图中(0,1)点,故ROC曲线越靠拢(0,1)点,越偏离45度对角线越好,Sensitivity、Specificity越大效果越好。

随着阈值threshold调整,ROC坐标系里的点如何移动可以参考:

3、如何画ROC曲线

对于一个特定的分类器和测试数据集,显然只能得到一个分类结果,即一组FPR和TPR结果,而要得到一个曲线,我们实际上需要一系列FPR和TPR的值,这又是如何得到的呢?我们先来看一下Wikipedia上对ROC曲线的定义:

In signal detection theory, a receiver operating characteristic (ROC), or simply ROC curve, is a graphical plot which illustrates the performance of a binary classifier system as its discrimination threshold is varied.

问题在于“as its discrimination threashold is varied”。如何理解这里的“discrimination threashold”呢?我们忽略了分类器的一个重要功能“概率输出”,即表示分类器认为某个样本具有多大的概率属于正样本(或负样本)。通过更深入地了解各个分类器的内部机理,我们总能想办法得到一种概率输出。通常来说,是将一个实数范围通过某个变换映射到(0,1)区间。

假如我们已经得到了所有样本的概率输出(属于正样本的概率),现在的问题是如何改变“discrimination threashold”?我们根据每个测试样本属于正样本的概率值从大到小排序。下图是一个示例,图中共有20个测试样本,“Class”一栏表示每个测试样本真正的标签(p表示正样本,n表示负样本),“Score”表示每个测试样本属于正样本的概率。

接下来,我们从高到低,依次将“Score”值作为阈值threshold,当测试样本属于正样本的概率大于或等于这个threshold时,我们认为它为正样本,否则为负样本。举例来说,对于图中的第4个样本,其“Score”值为0.6,那么样本1,2,3,4都被认为是正样本,因为它们的“Score”值都大于等于0.6,而其他样本则都认为是负样本。每次选取一个不同的threshold,我们就可以得到一组FPR和TPR,即ROC曲线上的一点。这样一来,我们一共得到了20组FPR和TPR的值,将它们画在ROC曲线的结果如下图:

当我们将threshold设置为1和0时,分别可以得到ROC曲线上的(0,0)和(1,1)两个点。将这些(FPR,TPR)对连接起来,就得到了ROC曲线。当threshold取值越多,ROC曲线越平滑。

其实,我们并不一定要得到每个测试样本是正样本的概率值,只要得到这个分类器对该测试样本的“评分值”即可(评分值并不一定在(0,1)区间)。评分越高,表示分类器越肯定地认为这个测试样本是正样本,而且同时使用各个评分值作为threshold。我认为将评分值转化为概率更易于理解一些。

4、AUC

AUC值的计算

AUC (Area Under Curve)(https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve) 被定义为ROC曲线下的面积,显然这个面积的数值不会大于1。又由于ROC曲线一般都处于y=x这条直线的上方,所以AUC的取值范围一般在0.5和1之间。使用AUC值作为评价标准是因为很多时候ROC曲线并不能清晰的说明哪个分类器的效果更好,而作为一个数值,对应AUC更大的分类器效果更好。

AUC的计算有两种方式,梯形法和ROC AUCH法,都是以逼近法求近似值,具体见wikipedia(https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve)。

AUC意味着什么

那么AUC值的含义是什么呢?根据(Fawcett, 2006),AUC的值的含义是:

The AUC value is equivalent to the probability that a randomly chosen positive example is ranked higher than a randomly chosen negative example.

这句话有些绕,我尝试解释一下:首先AUC值是一个概率值,当你随机挑选一个正样本以及一个负样本,当前的分类算法根据计算得到的Score值将这个正样本排在负样本前面的概率就是AUC值。当然,AUC值越大,当前的分类算法越有可能将正样本排在负样本前面,即能够更好的分类。

从AUC判断分类器(预测模型)优劣的标准:

  • AUC = 1,是完美分类器,采用这个预测模型时,存在至少一个阈值能得出完美预测。绝大多数预测的场合,不存在完美分类器。
  • 0.5 < AUC < 1,优于随机猜测。这个分类器(模型)妥善设定阈值的话,能有预测价值。
  • AUC = 0.5,跟随机猜测一样(例:丢铜板),模型没有预测价值。
  • AUC < 0.5,比随机猜测还差;但只要总是反预测而行,就优于随机猜测。

三种AUC值示例:

简单说:AUC值越大的分类器,正确率越高。

为什么使用ROC曲线

既然已经这么多评价标准,为什么还要使用ROC和AUC呢?因为ROC曲线有个很好的特性:当测试集中的正负样本的分布变化的时候,ROC曲线能够保持不变。在实际的数据集中经常会出现类不平衡(class imbalance)现象,即负样本比正样本多很多(或者相反),而且测试数据中的正负样本的分布也可能随着时间变化。下图是ROC曲线和Precision-Recall(https://en.wikipedia.org/wiki/Precision_and_recall)曲线的对比:

在上图中,(a)和(c)为ROC曲线,(b)和(d)为Precision-Recall曲线。(a)和(b)展示的是分类其在原始测试集(正负样本分布平衡)的结果,(c)和(d)是将测试集中负样本的数量增加到原来的10倍后,分类器的结果。可以明显的看出,ROC曲线基本保持原貌,而Precision-Recall曲线则变化较大。

Reference

1、Wikipedia:Receiver operating characteristic(https://en.wikipedia.org/wiki/Receiver_operating_characteristic)

2、孔明的博客:ROC和AUC介绍以及如何计算AUC(http://alexkong.net/2013/06/introduction-to-auc-and-roc/)

3、Rachel Zhang的专栏(CSDN):ROC曲线-阈值评价标准(http://blog.csdn.net/abcjennifer/article/details/7359370)

4、博客园dzl_ML:机器学习之分类器性能指标之ROC曲线、AUC值(http://www.cnblogs.com/dlml/p/4403482.html)

5、知乎:精确率、召回率、F1 值、ROC、AUC 各自的优缺点是什么?(https://www.zhihu.com/question/30643044)

(在此对以上博文的博主表示感谢!)

原文发布于微信公众号 - 人工智能LeadAI(atleadai)

原文发表时间:2017-11-20

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器学习算法与理论

基于Triplet loss函数训练人脸识别深度网络(Open Face)

Git:  http://cmusatyalab.github.io/openface/ FaceNet’s innovation comes from fo...

3636
来自专栏算法channel

深度学习|神经网络模型实现手写字分类求解思路

请点击上面公众号,免费订阅。 《实例》阐述算法,通俗易懂,助您对算法的理解达到一个新高度。包含但不限于:经典算法,机器学习,深度学习,LeetCode 题解,...

3307
来自专栏AI派

一文读懂二元分类模型评估指标

在分类模型中,有很多关于模型性能的评估指标(evaluation metric),比如 accuracy、precision、recall、f1-score、r...

3128
来自专栏Echo is learning

machine learning 之 Neural Network 3

1145
来自专栏大数据挖掘DT机器学习

机器学习-特征选择

1 介绍 在计算机视觉、模式识别、数据挖掘很多应用问题中,我们经常会遇到很高维度的数据,高维度的数据会造成很多问题,例如导致算法运行性能以及准确性的降低。特征选...

3395
来自专栏人工智能LeadAI

BAT机器学习面试1000题系列(第150~279题)

长文~可先收藏再看哟~ 150、在感知机中(Perceptron)的任务顺序是什么?深度学习 DL基础 易 1 随机初始化感知机的权重 2 去到数据集的下一批(...

1.2K9
来自专栏AI科技大本营的专栏

机器学习笔试题精选

机器学习是一门理论性和实战性都比较强的技术学科。在应聘机器学习相关工作岗位时,我们常常会遇到各种各样的机器学习问题和知识点。为了帮助大家对这些知识点进行梳理和理...

693
来自专栏AI科技大本营的专栏

北大、北理工、旷视联手:用于图像语义分割的金字塔注意力网络

近日,北京理工大学、旷视科技、北京大学联手,发表了一篇名为 Pyramid Attention Network for Semantic Segmentatio...

822
来自专栏https://www.cnblogs.com/L

【机器学习】--机器学习之朴素贝叶斯从初始到应用

机器学习算法中,有种依据概率原则进行分类的朴素贝叶斯算法,正如气象学家预测天气一样,朴素贝叶斯算法就是应用先前事件的有关数据来估计未来事件发生的概率。

762
来自专栏互联网大杂烩

分类问题 数据挖掘之分类模型

判别分析是在已知研究对象分成若干类型并已经取得各种类型的一批已知样本的观测数据,在此基础上根据某些准则建立判别式,然后对未知类型的样品进行判别分析。

492

扫描关注云+社区