用 LSTM 做时间序列预测的一个小例子

问题:航班乘客预测 数据:1949 到 1960 一共 12 年,每年 12 个月的数据,一共 144 个数据,单位是 1000 下载地址(https://datamarket.com/data/set/22u3/international-airline-passengers-monthly-totals-in-thousands-jan-49-dec-60#!ds=22u3&display=line) 目标:预测国际航班未来 1 个月的乘客数

import numpy
import matplotlib.pyplot as plt
from pandas import read_csv
import math
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import LSTM
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
%matplotlib inline

导入数据:

# load the dataset

dataframe = read_csv('international-airline-passengers.csv', usecols=[1], engine='python', skipfooter=3) dataset = dataframe.values# 将整型变为floatdataset = dataset.astype('float32') plt.plot(dataset) plt.show()

从这 12 年的数据可以看到上升的趋势,每一年内的 12 个月里又有周期性季节性的规律。

需要把数据做一下转化:

将一列变成两列,第一列是 t 月的乘客数,第二列是 t+1 列的乘客数。

look_back 就是预测下一步所需要的 time steps:

timesteps 就是 LSTM 认为每个输入数据与前多少个陆续输入的数据有联系。例如具有这样用段序列数据 “…ABCDBCEDF…”,当 timesteps 为 3 时,在模型预测中如果输入数据为“D”,那么之前接收的数据如果为“B”和“C”则此时的预测输出为 B 的概率更大,之前接收的数据如果为“C”和“E”,则此时的预测输出为 F 的概率更大。

# X is the number of passengers at a given time (t) and Y is the number of passengers at the next time (t + 1). # convert an array of values into a dataset matrix def create_dataset(dataset, look_back=1): dataX, dataY = [], [] for i in range(len(dataset)-look_back-1): a = dataset[i:(i+look_back), 0] dataX.append(a) dataY.append(dataset[i + look_back, 0]) return numpy.array(dataX), numpy.array(dataY) # fix random seed for reproducibility numpy.random.seed(7)

当激活函数为 sigmoid 或者 tanh 时,要把数据正则话,此时 LSTM 比较敏感。

设定 67% 是训练数据,余下的是测试数据。

# normalize the datasetscaler = MinMaxScaler(feature_range=(0, 1)) dataset = scaler.fit_transform(dataset)# split into train and test setstrain_size = int(len(dataset) * 0.67) test_size = len(dataset) - train_size train, test = dataset[0:train_size,:], dataset[train_size:len(dataset),:]

X=t and Y=t+1 时的数据,并且此时的维度为 [samples, features]

# use this function to prepare the train and test datasets for modeling look_back = 1 trainX, trainY = create_dataset(train, look_back) testX, testY = create_dataset(test, look_back)

投入到 LSTM 的 X 需要有这样的结构: [samples, time steps, features],所以做一下变换:

# reshape input to be [samples, time steps, features]trainX = numpy.reshape(trainX, (trainX.shape[0], 1, trainX.shape[1])) testX = numpy.reshape(testX, (testX.shape[0], 1, testX.shape[1]))

建立 LSTM 模型:

输入层有 1 个input,隐藏层有 4 个神经元,输出层就是预测一个值,激活函数用 sigmoid,迭代 100 次,batch size 为 1

# create and fit the LSTM networkmodel = Sequential() model.add(LSTM(4, input_shape=(1, look_back))) model.add(Dense(1)) model.compile(loss='mean_squared_error', optimizer='adam') model.fit(trainX, trainY, epochs=100, batch_size=1,verbose=2)

Epoch 100/100 1s - loss: 0.0020

预测:

# make predictionstrainPredict = model.predict(trainX) testPredict = model.predict(testX)

计算误差之前要先把预测数据转换成同一单位

# invert predictionstrainPredict = scaler.inverse_transform(trainPredict) trainY = scaler.inverse_transform([trainY]) testPredict = scaler.inverse_transform(testPredict) testY = scaler.inverse_transform([testY])

计算 mean squared error

trainScore = math.sqrt(mean_squared_error(trainY[0], trainPredict[:,0]))
print('Train Score: %.2f RMSE' % (trainScore))
testScore = math.sqrt(mean_squared_error(testY[0], testPredict[:,0]))
print('Test Score: %.2f RMSE' % (testScore))
Train Score: 22.92 RMSE
Test Score: 47.53 RMSE

画出结果:蓝色为原数据,绿色为训练集的预测值,红色为测试集的预测值

# shift train predictions for plottingtrainPredictPlot = numpy.empty_like(dataset) trainPredictPlot[:, :] = numpy.nan trainPredictPlot[look_back:len(trainPredict)+look_back, :] = trainPredict# shift test predictions for plottingtestPredictPlot = numpy.empty_like(dataset) testPredictPlot[:, :] = numpy.nan testPredictPlot[len(trainPredict)+(look_back*2)+1:len(dataset)-1, :] = testPredict# plot baseline and predictionsplt.plot(scaler.inverse_transform(dataset)) plt.plot(trainPredictPlot) plt.plot(testPredictPlot) plt.show()

上面的结果并不是最佳的,只是举一个例子来看 LSTM 是如何做时间序列的预测的。

可以改进的地方,最直接的 隐藏层的神经元个数是不是变为 128 更好呢,隐藏层数是不是可以变成 2 或者更多呢,time steps 如果变成 3 会不会好一点。

另外感兴趣的筒子可以想想,RNN 做时间序列的预测到底好不好呢

参考资料

http://machinelearningmastery.com/time-series-prediction-lstm-recurrent-neural-networks-python-keras/

推荐阅读 历史技术博文链接汇总 http://www.jianshu.com/p/28f02bb59fe5 也许可以找到你想要的

原文发布于微信公众号 - 人工智能LeadAI(atleadai)

原文发表时间:2017-12-12

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏人工智能

kNN-Iris分类器(一)

“著名的鸢尾花(Iris)数据集(由Ronald Fisher于1936年发表)是一种展示机器学习框架API的好方法。从某种程度上说,Iris数据集是机器学习界...

30010
来自专栏人工智能头条

SVM大解密(附代码和公式)

2182
来自专栏新智元

【深度学习自动上色,数月工作几秒完成】开源神经网络图片上色技术解析

【新智元导读】本文是作者对Reddit社区用户Amir Avni深度学习上色机器人的实现,看完本文后,你也能打造媲美大师级着色效果的自动上色神经网络应用。此外,...

4487
来自专栏AI科技大本营的专栏

SVM大解密(附代码和公式)

写在之前 支持向量机(SVM),一个神秘而众知的名字,在其出来就受到了莫大的追捧,号称最优秀的分类算法之一,以其简单的理论构造了复杂的算法,又以其简单的用法实现...

8349
来自专栏Petrichor的专栏

论文阅读: Faster R-CNN

RP原本主要用SS (Selective Search) 来生成,只能在CPU上跑。一张图片生成~2,000个proposal,效率0.5fps,实在太慢。 ...

963
来自专栏PPV课数据科学社区

学习SVM,这篇文章就够了!

支持向量机(SVM),一个神秘而众知的名字,在其出来就受到了莫大的追捧,号称最优秀的分类算法之一,以其简单的理论构造了复杂的算法,又以其简单的用法实现了复杂的问...

2864
来自专栏CreateAMind

论文:生成模型采样-类比学习应用 代码

之前发的这篇文章(之前内容在文章底部)介绍了生成模型的高效采样及隐变量空间特征特点,最近的How to Train a GAN? Tips and tricks...

842
来自专栏集智的专栏

使用腾讯云 GPU 学习深度学习系列之三:搭建深度神经网络

本文进一步详细介绍了 Tensorflow 中 Keras 工具包提供的几种深度神经网络模块,包括其功能以及用途。

7.5K3
来自专栏大学生计算机视觉学习DeepLearning

深度学习(七)U-Net原理以及keras代码实现医学图像眼球血管分割

原文链接:https://www.cnblogs.com/DOMLX/p/9780786.html

5083
来自专栏深度学习入门与实践

【深度学习系列】用PaddlePaddle和Tensorflow进行图像分类

  上个月发布了四篇文章,主要讲了深度学习中的“hello world”----mnist图像识别,以及卷积神经网络的原理详解,包括基本原理、自己手写CNN和p...

4415

扫码关注云+社区