图像学习-HOG特征

好久没写东西了,由于楼主换了个城市工作,发现工作量蹭蹭的上来了,周末又喜欢出去觅食,导致没学习很久,今天准备水一篇来翻译一下如何理解HOG(Histogram Of Gradient, 方向梯度直方图)。本文主要翻译了这篇文章,也是我非常喜欢的博主之一(奈何他开的课程错过了T-T~~)。

特征描述子

特征描述子就是图像的表示,抽取了有用的信息丢掉了不相关的信息。通常特征描述子会把一个w*h*3(宽*高*3,3个channel)的图像转换成一个长度为n的向量/矩阵。比如一副64*128*3的图像,经过转换后输出的图像向量长度可以是3780。

什么样子的特征是有用的呢?假设我们想要预测一张图片里面衣服上面的扣子,扣子通常是圆的,而且上面有几个洞,那你就可以用边缘检测(edge detector),把图片变成只有边缘的图像,然后就可以很容易的分辨了,那么对于这张图边缘信息就是有用的,颜色信息就是没有用的。而且好的特征应该能够区分纽扣和其它圆形的东西的区别。

方向梯度直方图(HOG)中,梯度的方向分布被用作特征。沿着一张图片X和Y轴的方向上的梯度是很有用的,因为在边缘和角点的梯度值是很大的,我们知道边缘和角点包含了很多物体的形状信息。

(HOG特征描述子可以不局限于一个长度的,也可以用很多其他的长度,这里只记录一种计算方法。)

怎么计算方向梯度直方图呢?

我们会先用图像的一个patch来解释。

1、预处理

Patch可以是任意的尺寸,但是有一个固定的比列,比如当patch长宽比1:2,那patch大小可以是100*200, 128*256或者1000*2000但不可以是101*205。

这里有张图是720*475的,我们选100*200大小的patch来计算HOG特征,把这个patch从图片里面抠出来,然后再把大小调整成64*128。

2、计算梯度图像

首相我们计算水平和垂直方向的梯度,再来计算梯度的直方图。可以用下面的两个kernel来计算,也可以直接用OpenCV里面的kernel大小为1的Sobel算子来计算。

调用OpenCV代码如下:

// C++ gradient calculation.// Read imageMat img = imread("bolt.png"); img.convertTo(img, CV_32F, 1/255.0); // Calculate gradients gx, gyMat gx, gy; Sobel(img, gx, CV_32F, 1, 0, 1); Sobel(img, gy, CV_32F, 0, 1, 1);# Python gradient calculation # Read imageim = cv2.imread('bolt.png') im = np.float32(im) / 255.0 # Calculate gradient gx = cv2.Sobel(img, cv2.CV_32F, 1, 0, ksize=1) gy = cv2.Sobel(img, cv2.CV_32F, 0, 1, ksize=1)

接着,用下面的公式来计算梯度的幅值g和方向theta:

可以用OpenCV的cartToPolar函数来计算:

// C++ Calculate gradient magnitude and direction (in degrees) Mat mag, angle; cartToPolar(gx, gy, mag, angle, 1);# Python Calculate gradient magnitude and direction ( in degrees ) mag, angle = cv2.cartToPolar(gx, gy, angleInDegrees=True)

计算得到的gradient图如下:

左边:x轴的梯度绝对值 中间:y轴的梯度绝对值 右边:梯度幅值

从上面的图像中可以看到x轴方向的梯度主要凸显了垂直方向的线条,y轴方向的梯度凸显了水平方向的梯度,梯度幅值凸显了像素值有剧烈变化的地方。(注意:图像的原点是图片的左上角,x轴是水平的,y轴是垂直的)

图像的梯度去掉了很多不必要的信息(比如不变的背景色),加重了轮廓。换句话说,你可以从梯度的图像中还是可以轻而易举的发现有个人。

在每个像素点,都有一个幅值(magnitude)和方向,对于有颜色的图片,会在三个channel上都计算梯度。那么相应的幅值就是三个channel上最大的幅值,角度(方向)是最大幅值所对应的角。

3、在8*8的网络中计算梯度直方图

在这一步,上面的patch图像会被分割成8*8大小的网格(如下图),每个网格都会计算一个梯度直方图。那为什么要分成8*8的呢?用特征描述子的一个主要原因是它提供了一个紧凑(compact)/压缩的表示。一个8*8的图像有8*8*3=192个像素值,每个像素有两个值(幅值magnitude和方向direction,三个channel取最大magnitude那个),加起来就是8*8*2=128,后面我们会看到这128个数如何用一个9个bin的直方图来表示成9个数的数组。不仅仅是可以有紧凑的表示,用直方图来表示一个patch也可以更加抗噪,一个gradient可能会有噪音,但是用直方图来表示后就不会对噪音那么敏感了。

这个patch的大小是64*128,分割成8*8的cell,那么一共有64/8 * 128/8 = 8*16=128个网格。

对于64*128的这幅patch来说,8*8的网格已经足够大来表示有趣的特征比如脸,头等等。

直方图是有9个bin的向量,代表的是角度0,20,40,60.....160。

我们先来看看每个8*8的cell的梯度都是什么样子:

中间: 一个网格用箭头表示梯度 右边: 这个网格用数字表示的梯度

中间这个图的箭头是梯度的方向,长度是梯度的大小,可以发现箭头的指向方向是像素强度都变化方向,幅值是强度变化的大小。

右边的梯度方向矩阵中可以看到角度是0-180度,不是0-360度,这种被称之为"无符号"梯度("unsigned" gradients)因为一个梯度和它的负数是用同一个数字表示的,也就是说一个梯度的箭头以及它旋转180度之后的箭头方向被认为是一样的。那为什么不用0-360度的表示呢?在事件中发现unsigned gradients比signed gradients在行人检测任务中效果更好。一些HOG的实现中可以让你指定signed gradients。

下一步就是为这些8*8的网格创建直方图,直方图包含了9个bin来对应0,20,40,...160这些角度。

下面这张图解释了这个过程。我们用了上一张图里面的那个网格的梯度幅值和方向。根据方向选择用哪个bin, 根据副值来确定这个bin的大小。先来看蓝色圈圈出来的像素点,它的角度是80,副值是2,所以它在第五个bin里面加了2,再来看红色的圈圈出来的像素点,它的角度是10,副值是4,因为角度10介于0-20度的中间(正好一半),所以把幅值一分为二地放到0和20两个bin里面去。

梯度直方图

这里有个细节要注意,如果一个角度大于160度,也就是在160-180度之间,我们知道这里角度0,180度是一样的,所以在下面这个例子里,像素的角度为165度的时候,要把幅值按照比例放到0和160的bin里面去。

角度大于160的情况

把这8*8的cell里面所有的像素点都分别加到这9个bin里面去,就构建了一个9-bin的直方图,上面的网格对应的直方图如下:

8*8网格直方图

这里,在我们的表示中,Y轴是0度(从上往下)。你可以看到有很多值分布在0,180的bin里面,这其实也就是说明这个网格中的梯度方向很多都是要么朝上,要么朝下。

4、16*16块归一化

上面的步骤中,我们创建了基于图片的梯度直方图,但是一个图片的梯度对于整张图片的光线会很敏感。如果你把所有的像素点都除以2,那么梯度的幅值也会减半,那么直方图里面的值也会减半,所以这样并不能消除光线的影响。所以理想情况下,我们希望我们的特征描述子可以和光线变换无关,所以我们就想让我们的直方图归一化从而不受光线变化影响。

先考虑对向量用l2归一化的步骤是:

v = [128, 64, 32] [(128^2) + (64^2) + (32^2) ]^0.5=146.64 把v中每一个元素除以146.64得到[0.87,0.43,0.22] 考虑另一个向量2*v,归一化后可以得到向量依旧是[0.87, 0.43, 0.22]。你可以明白归一化是把scale给移除了。

你也许想到直接在我们得到的9*1的直方图上面做归一化,这也可以,但是更好的方法是从一个16*16的块上做归一化,也就是4个9*1的直方图组合成一个36*1的向量,然后做归一化,接着,窗口再朝后面挪8个像素(看动图)。重复这个过程把整张图遍历一边。

hog-16x16-block-normalization

5、计算HOG特征向量

为了计算这整个patch的特征向量,需要把36*1的向量全部合并组成一个巨大的向量。向量的大小可以这么计算:

  1. 我们有多少个16*16的块?水平7个,垂直15个,总共有7*15=105次移动。
  2. 每个16*16的块代表了36*1的向量。所以把他们放在一起也就是36*105=3780维向量。

可视化HOG

通常HOG特征描述子是画出8*8网格中9*1归一化的直方图,见下图。你可以发现直方图的主要方向捕捉了这个人的外形,特别是躯干和腿。

原文发布于微信公众号 - 人工智能LeadAI(atleadai)

原文发表时间:2018-01-17

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏人工智能

神经网络

如今,科学家正在努力探索人脑的奥秘,他们试图通过模仿人脑,来找到大数据的解决方案。

75711
来自专栏机器之心

AAAI 2018 | 港中文-商汤联合论文:自监督语义分割的混合与匹配调节

3977
来自专栏和蔼的张星的图像处理专栏

DSST详解

有一段时间没有看tracking了,前面一个月老师没有找,我也没有看文章,主要去看c++和cs231n去了。上周一老师找了我一次,于是赶紧把tracking又拾...

712
来自专栏Bingo的深度学习杂货店

图像处理之特征提取

知乎上看到一个话题—— 目前火热的 Deep Learning 会灭绝传统的 SIFT / SURF 特征提取方法吗? ---- 由于之前研究过SIFT和HO...

3684
来自专栏新智元

【致敬ImageNet】ResNet 6大变体:何恺明,孙剑,颜水成引领计算机视觉这两年

【新智元导读】2015 年,152 层深的 ResNet 横空出世,不仅取得当年ImageNet竞赛冠军,相关论文在CVPR 2016斩获最佳论文奖。ResNe...

3888
来自专栏大数据挖掘DT机器学习

比较R语言机器学习算法的性能

原文:Compare The Performance of Machine Learning Algorithms in R 译文:http://g...

3156
来自专栏人工智能头条

深度学习之神经网络与支持向量机

893
来自专栏机器之心

深度 | 使用三重损失网络学习位置嵌入:让位置数据也能进行算术运算

我们 Sentiance 开发了一款能接收加速度计、陀螺仪和位置信息等智能手机传感器数据并从中提取出行为见解的平台。我们的人工智能平台能学习用户的模式,并能预测...

911
来自专栏AI2ML人工智能to机器学习

最小二乘法的4种求解

我们曾经在“一步一步走向锥规划 - LS”里面详细介绍了最小二乘法的由来和几何解释。 并且, 在“回归分析中的问题和修正的探讨”中谈到了经典最小二乘法OLS的局...

332
来自专栏ATYUN订阅号

深度学习要点:可视化卷积神经网络

AiTechYun 编辑:yuxiangyu 深度学习中最深入讨论的话题之一是如何解释和理解一个训练完成的模型,尤其是在医疗保健等高风险行业的背景下。“黑盒”这...

55610

扫描关注云+社区