如何感性地理解EM算法?

如果使用基于最大似然估计的模型,模型中存在隐变量,就要用EM算法做参数估计。个人认为,理解EM算法背后的idea,远比看懂它的数学推导重要。idea会让你有一个直观的感受,从而明白算法的合理性,数学推导只是将这种合理性用更加严谨的语言表达出来而已。打个比方,一个梨很甜,用数学的语言可以表述为糖分含量90%,但只有亲自咬一口,你才能真正感觉到这个梨有多甜,也才能真正理解数学上的90%的糖分究竟是怎么样的。如果EM是个梨,本文的目的就是带领大家咬一口。

01 一个非常简单的例子

假设现在有两枚硬币1和2,,随机抛掷后正面朝上概率分别为P1,P2。为了估计这两个概率,做实验,每次取一枚硬币,连掷5下,记录下结果,如下:

硬币

结果

统计

1

正正反正反

3正-2反

2

反反正正反

2正-3反

1

正反反反反

1正-4反

2

正反反正正

3正-2反

1

反正正反反

2正-3反

可以很容易地估计出P1和P2,如下:

P1 = (3+1+2)/ 15 = 0.4 P2= (2+3)/10 = 0.5

到这里,一切似乎很美好,下面我们加大难度。

02

加入隐变量z

还是上面的问题,现在我们抹去每轮投掷时使用的硬币标记,如下:

硬币

结果

统计

Unknown

正正反正反

3正-2反

Unknown

反反正正反

2正-3反

Unknown

正反反反反

1正-4反

Unknown

正反反正正

3正-2反

Unknown

反正正反反

2正-3反

好了,现在我们的目标没变,还是估计P1和P2,要怎么做呢?

显然,此时我们多了一个隐变量z,可以把它认为是一个5维的向量(z1,z2,z3,z4,z5),代表每次投掷时所使用的硬币,比如z1,就代表第一轮投掷时使用的硬币是1还是2。但是,这个变量z不知道,就无法去估计P1和P2,所以,我们必须先估计出z,然后才能进一步估计P1和P2。

但要估计z,我们又得知道P1和P2,这样我们才能用最大似然概率法则去估计z,这不是鸡生蛋和蛋生鸡的问题吗,如何破?

答案就是先随机初始化一个P1和P2,用它来估计z,然后基于z,还是按照最大似然概率法则去估计新的P1和P2,如果新的P1和P2和我们初始化的P1和P2一样,请问这说明了什么?(此处思考1分钟)

这说明我们初始化的P1和P2是一个相当靠谱的估计!

就是说,我们初始化的P1和P2,按照最大似然概率就可以估计出z,然后基于z,按照最大似然概率可以反过来估计出P1和P2,当与我们初始化的P1和P2一样时,说明是P1和P2很有可能就是真实的值。这里面包含了两个交互的最大似然估计。

如果新估计出来的P1和P2和我们初始化的值差别很大,怎么办呢?就是继续用新的P1和P2迭代,直至收敛。

这就是下面的EM初级版。

03

EM初级版

我们不妨这样,先随便给P1和P2赋一个值,比如:

P1 = 0.2 P2 = 0.7

然后,我们看看第一轮抛掷最可能是哪个硬币。

如果是硬币1,得出3正2反的概率为 0.2*0.2*0.2*0.8*0.8 = 0.00512 如果是硬币2,得出3正2反的概率为0.7*0.7*0.7*0.3*0.3=0.03087

然后依次求出其他4轮中的相应概率。做成表格如下:

轮数

若是硬币1

若是硬币2

1

0.00512

0.03087

2

0.02048

0.01323

3

0.08192

0.00567

4

0.00512

0.03087

5

0.02048

0.01323

按照最大似然法则:

第1轮中最有可能的是硬币2 第2轮中最有可能的是硬币1 第3轮中最有可能的是硬币1 第4轮中最有可能的是硬币2 第5轮中最有可能的是硬币1

我们就把上面的值作为z的估计值。然后按照最大似然概率法则来估计新的P1和P2。

P1 = (2+1+2)/15 = 0.33 P2=(3+3)/10 = 0.6

设想我们是全知的神,知道每轮抛掷时的硬币就是如本文第001部分标示的那样,那么,P1和P2的最大似然估计就是0.4和0.5(下文中将这两个值称为P1和P2的真实值)。那么对比下我们初始化的P1和P2和新估计出的P1和P2:

初始化的P1

估计出的P1

真实的P1

初始化的P2

估计出的P2

真实的P2

0.2

0.33

0.4

0.7

0.6

0.5

看到没?我们估计的P1和P2相比于它们的初始值,更接近它们的真实值了!

可以期待,我们继续按照上面的思路,用估计出的P1和P2再来估计z,再用z来估计新的P1和P2,反复迭代下去,就可以最终得到P1 = 0.4,P2=0.5,此时无论怎样迭代,P1和P2的值都会保持0.4和0.5不变,于是乎,我们就找到了P1和P2的最大似然估计。

这里有两个问题:

1、新估计出的P1和P2一定会更接近真实的P1和P2? 答案是:没错,一定会更接近真实的P1和P2,数学可以证明,但这超出了本文的主题,请参阅其他书籍或文章。

2、迭代一定会收敛到真实的P1和P2吗? 答案是:不一定,取决于P1和P2的初始化值,上面我们之所以能收敛到P1和P2,是因为我们幸运地找到了好的初始化值。

04

EM进阶版

下面,我们思考下,上面的方法还有没有改进的余地?

我们是用最大似然概率法则估计出的z值,然后再用z值按照最大似然概率法则估计新的P1和P2。也就是说,我们使用了一个最可能的z值,而不是所有可能的z值。

如果考虑所有可能的z值,对每一个z值都估计出一个新的P1和P2,将每一个z值概率大小作为权重,将所有新的P1和P2分别加权相加,这样的P1和P2应该会更好一些。

所有的z值有多少个呢?显然,有2^5=32种,需要我们进行32次估值??

不需要,我们可以用期望来简化运算。

轮数

若是硬币1

若是硬币2

1

0.00512

0.03087

2

0.02048

0.01323

3

0.08192

0.00567

4

0.00512

0.03087

5

0.02048

0.01323

利用上面这个表,我们可以算出每轮抛掷中使用硬币1或者使用硬币2的概率。比如第1轮,使用硬币1的概率是:

0.00512/(0.00512+0.03087)=0.14 使用硬币2的概率是1-0.14=0.86

依次可以算出其他4轮的概率,如下:

轮数

z_i=硬币1

z_i=硬币2

1

0.14

0.86

2

0.61

0.39

3

0.94

0.06

4

0.14

0.86

5

0.61

0.39

上表中的右两列表示期望值。看第一行,0.86表示,从期望的角度看,这轮抛掷使用硬币2的概率是0.86。相比于前面的方法,我们按照最大似然概率,直接将第1轮估计为用的硬币2,此时的我们更加谨慎,我们只说,有0.14的概率是硬币1,有0.86的概率是硬币2,不再是非此即彼。这样我们在估计P1或者P2时,就可以用上全部的数据,而不是部分的数据,显然这样会更好一些。

这一步,我们实际上是估计出了z的概率分布,这步被称作E步。

结合下表:

硬币

结果

统计

Unknown

正正反正反

3正-2反

Unknown

反反正正反

2正-3反

Unknown

正反反反反

1正-4反

Unknown

正反反正正

3正-2反

Unknown

反正正反反

2正-3反

我们按照期望最大似然概率的法则来估计新的P1和P2:

以P1估计为例,第1轮的3正2反相当于 0.14*3=0.42正 0.14*2=0.28反

依次算出其他四轮,列表如下:

轮数

正面

反面

1

0.42

0.28

2

1.22

1.83

3

0.94

3.76

4

0.42

0.28

5

1.22

1.83

总计

4.22

7.98

P1=4.22/(4.22+7.98)=0.35

可以看到,改变了z值的估计方法后,新估计出的P1要更加接近0.4。原因就是我们使用了所有抛掷的数据,而不是之前只使用了部分的数据。

这步中,我们根据E步中求出的z的概率分布,依据最大似然概率法则去估计P1和P2,被称作M步。

05 总结

以上,我们用一个实际的小例子,来实际演示了EM算法背后的idea,共性存于个性之中,通过这个例子,我们可以对EM算法究竟在干什么有一个深刻感性的认识,掌握EM算法的思想精髓。

06 参考资料

http://pan.baidu.com/s/1i4NfvP7

原文发布于微信公众号 - 人工智能LeadAI(atleadai)

原文发表时间:2018-01-16

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器学习算法原理与实践

谱聚类(spectral clustering)原理总结

    谱聚类(spectral clustering)是广泛使用的聚类算法,比起传统的K-Means算法,谱聚类对数据分布的适应性更强,聚类效果也很优秀,同时...

503
来自专栏机器之心

想了解概率图模型?你要先理解图论的基本定义与形式

选自Dev To 作者:vaidehijoshi等 机器之心编译 参与:蒋思源、李泽南 图论一直是数学里十分重要的学科,其以图为研究对象,通常用来描述某些事物之...

2557
来自专栏小鹏的专栏

机器学习算法应用中常用技巧-2

7. 降维-PCA n_components为降到多少维,用原数据fit后,再用transform转换成降维后的数据。 from sklearn.decom...

17710
来自专栏CDA数据分析师

【从零开始学统计】3.置信度置信的到底是什么?

连载系列3:置信度置信的到底是什么? 前两期楼主分别作了均值和拟合优度的专题,今天就来说说置信度。 要说置信度,首先老师肯定会在此前已经介绍过了点估计了,那么引...

18210
来自专栏Vamei实验室

概率论04 随机变量

我们了解了“样本空间”,“事件”,“概率”。样本空间中包含了一次实验所有可能的结果,事件是样本空间的一个子集,每个事件可以有一个发生的概率。概率是集合的一个“测...

1808
来自专栏ml

机器学习之最小二乘法

1.背景:      1801年,意大利天文学家朱赛普·皮亚齐发现了第一颗小行星谷神星。经过40天的跟踪观测后,由于谷神星运行至太阳背后,使得皮亚齐失去了谷神星...

3336
来自专栏AI2ML人工智能to机器学习

一步一步走向锥规划 - LS

一般来说凸优化(Convex Optimization, CO)中最一般的是锥规划 (Cone Programming, CP) 问题, 最简单的是最小二乘(...

681

组和分组卷积

考虑一个正方形。它是对称的吗?它是如何对称的?它有多少对称性?它有什么样的对称性?

24410
来自专栏机器学习算法全栈工程师

听说比K-means厉害多了:谱聚类

地址:https://www.cnblogs.com/pinard/p/6221564.html

1402
来自专栏机器学习算法与Python学习

EM算法

推导EM算法之前,先引用《统计学习方法》中EM算法的例子: 例1. (三硬币模型) 假设有3枚硬币,分别记作A,B,C。这些硬币正面出现的概率分别为π,p和q。...

2578

扫码关注云+社区