GoogLeNet的心路历程(一)

这一段时间撸了几篇论文,当我撸到GoogLeNet系列论文的时候,真是脑洞大开!GoogLeNet绝对可以称为已公开神经网络的复杂度之王!每当我看到它那错综复杂的网络图时,心里总有一种说不出的苦涩滋味,我也不知为何。

然后,我萌生了一个想法,用自己的语言描述一下GoogLeNet的发展历程和关键技术点,我知道网上已经有很多人总结过GoogLeNet的各种版本,但那毕竟是别人的东西,自己总结一遍会提升自己的水平。计划是写4篇文章,希望能在一个月内完成吧。下面是GoogLeNet的4篇论文:

[v1] Going Deeper with Convolutions,ensemble top5 error 6.67%,2014

[v2] Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift,ensemble top5 error 4.8%,2015

[v3] Rethinking the Inception Architecture for Computer Vision,ensemble top5 error 3.5%,2015

[v4] Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning,ensemble top5 error 3.08%,2016

v4版本top5错误率只有3.08%!这个应该是目前错误率最低的吧。

不过有时候自己也会萌生一些悲观想法,现在深度学习的网络是越做越复杂,针对某些数据集的识别率是越来越高,可是,然并卵,当我们换个数据集,换个环境,换个照片,换个……以后,效果就不行了,这真是个问题啊!

本文介绍关于GoogLeNet第一篇正式论文,习惯称为inception v1,如下:

[v1] Going Deeper with Convolutions,top5 error 6.67%

在开始介绍论文之前,先说一些题外话,GoogLeNet这个名字的诞生由两方面促成,一是设计者在Google工作,二是向LeNet致敬。GoogLeNet只是一个名字,它的核心内容是发明了Inception Architecture(以下简称IA),发明IA的灵感来自于2013年的一篇论文《Provable Bounds for Learning Some Deep Representations》,这篇论文读起来非常困难,需要很多的数学知识,有兴趣的可以看看。

inception V1的主要贡献

1、提出inception architecture并对其优化

2、取消全连层

3、运用auxiliary classifiers加速网络converge

接下来对以上几点分别介绍。

inception architecture

首先得说一下Szegedy发明IA的动机,他估计是在某天阅读了Provable Bounds for Learning Some Deep Representations这篇论文,又结合自己多年来在深度学习界摸爬滚打的经验,发现传统的提高网络精度的方法是一条邪路(P.S. 传统的方法指的是 扩大网络规模 或 增大训练数据集),而想从本质上提高网络性能,就得用sparsely connected architectures,即“稀疏连接结构”。

我自己对“稀疏连接结构”的理解是这样的,用尽可能的“小”、“分散”的可堆叠的网络结构,去学习复杂的分类任务,怎么体现“小”、“分散”呢?如下图:

Inception Architecture,naive version

原来造神经网络,都是一条线下来,我们可以回想一下AlexNet、VGG等著名网络,而IA是“分叉-汇聚”型网络,也就是说在一层网络中存在多个不同尺度的kernels,卷积完毕后再汇聚,为了更好理解,“汇聚”的tensorflow代码写出来是这样的:

net = tf.concat(3, [branch1x1, branch5x5, branch3x3, branch_pool])

就是简单的在kernel维度把矩阵concatenate起来。但是这么做有一个问题,会产生“维度爆炸”,什么意思呢?假如branch1x1、branch3x3、branch5x5都有256个kernels,加上branch_pool的kernels(假定为256),经过tf.concat操作,最终的kernels是256×4=1024个kernels!这没法接受啊!如果多层IA叠加起来,那kernels的数量岂不上天!!于是Szegedy就改进了一下,如下图:

Inception module with dimension reductions

他加入了kernels数量控制方式,就是那些1×1的卷积层,这些1×1的卷积层输出kernels会比上一层要少,这样即便在经过tf.concat以后,总kernels数量不会增加太多。另外,这些1×1的卷积层还增加了网络的非线性程度。

关于IA的结构就介绍完了,可是,为什么?这样的结构有啥用?Szegedy在论文里解释过一点点:IA之所以能提高网络精度,可能就是归功于它拥有多个不同尺度的kernels,每一个尺度的kernel会学习不同的特征,把这些不同kernels学习到的特征汇聚给下一层,能够更好的实现全方位的深度学习!

取消全连层

为什么VGG网络的参数那么多?就是因为它在最后有两个4096的全连层!Szegedy吸取了教训,为了压缩GoogLeNet的网络参数,他把全连层取消了!其实我个人也认为全连层作用确实没那么大,取消了也好,GoogLeNet网络详细配置如下:

GoogLeNet详细配置

从上图就可以看出,网络的最后几层是avg pool、dropout、linear和softmax,没有看到fully connect的影子。现在取消全连层貌似是个大趋势,近两年的优秀大型神经网络都没有全连层,可能是全连层参数太多,网络深度增加了以后,难以接受吧。

Auxiliary classifiers

搞机器学习的都知道,梯度消散是所有深层网络的通病,往往训练到最后,网络最开始的几层就“训不动了”!于是Szegedy加入了auxiliary classifiers(简称AC),用于辅助训练,加速网络converge,如下图画红框部分:

GoogLeNet

以上图片摘自此文,因为网络太深了,竖着太长,就把它横过来看了。可以看到,笔者在网络中间层加入了两个AC,这两个AC在训练的时候也跟着学习,同时把自己学习到的梯度反馈给网络,算上网络最后一层的梯度反馈,GoogLeNet一共有3个“梯度提供商”,先不说这么做有没有问题,它确实提高了网络收敛的速度,因为梯度大了嘛。另外,GoogLeNet在做inference的时候AC是要被摘掉的。

AC这种加速收敛训练方式与ResNet表面上看不太一样,但是我感觉本质上应该是类似的。ResNet也很深,但是它先是通过构建浅层网络学习参数,再把浅层网络的参数应用到较深网络中,从而尽可能减少梯度消散的影响。GoogLeNet是直接把浅层网络的训练和深层网络的训练揉到一起了。关于这个问题还有待深究。

原文发布于微信公众号 - 人工智能LeadAI(atleadai)

原文发表时间:2018-03-08

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏JackieZheng

基于改进人工蜂群算法的K均值聚类算法(附MATLAB版源代码)

  其实一直以来也没有准备在园子里发这样的文章,相对来说,算法改进放在园子里还是会稍稍显得格格不入。但是最近邮箱收到的几封邮件让我觉得有必要通过我的博客把过去做...

42110
来自专栏CSDN技术头条

深度学习已成功应用于这三大领域

本文中,我们将介绍如何使用深度学习来解决计算机视觉、语音识别、自然语言处理以及其他商业领域中的应用。首先我们将讨论在许多最重要的AI 应用中所需的大规模神经网络...

2359
来自专栏AI研习社

不是你无法入门自然语言处理(NLP),而是你没找到正确的打开方式

〇、序 之前一段时间,在结合深度学习做 NLP 的时候一直有思考一些问题,其中有一个问题算是最核心一个:究竟深度网络是怎么做到让各种 NLP 任务解决地如何...

4416
来自专栏企鹅号快讯

Kaggle大神带你上榜单Top2%:点击预测大赛纪实(下)

作者:Gabriel Moreira 编译:修竹、柳青秀、王梦泽、钱天培 在上周,文摘菌为大家介绍了资深数据科学家Gabriel参加Kaggle的Outbrai...

3658
来自专栏机器之心

业界 | 谷歌发布MobileNetV2:可做语义分割的下一代移动端计算机视觉架构

选自Google Blog 作者:Mark Sandler、Andrew Howard 机器之心编译 参与:黄小天、思源 深度学习在手机等移动端设备上的应用是机...

3126
来自专栏人工智能头条

八大步骤,用机器学习解决90%的NLP问题

1723
来自专栏人工智能头条

深度学习已成功应用于这三大领域

1052
来自专栏新智元

【Nature重磅】谷歌AI自动重构3D大脑,最高精度绘制神经元

【新智元导读】AI能够映射大脑神经元。人类大脑包含大约860亿个神经元,并且一个立方毫米的神经元可以产生超过1000TB的数据。由于其庞大的规模,绘制神经系统内...

762
来自专栏人工智能头条

中文NLP用什么?中文自然语言处理的完整机器处理流程

人工智能头条早先发布的文章《用 Python 构建 NLP Pipeline,从思路到具体代码,这篇文章一次性都讲到了》,是基于英文来举例的。

1.3K5
来自专栏AI科技评论

ICPR 图像识别与检测挑战赛冠军方案出炉,基于偏旁部首来识别 Duang 字

随着互联网的飞速发展,图片成为信息传播的重要媒介,图片中的文本识别与检测技术也一度成为学界业界的研究热点,应用在诸如证件照识别、信息采集、书籍电子化等领域。

2912

扫码关注云+社区