Tensorflow高级API的进阶--利用tf.contrib.learn建立输入函数

在实际的业务中,可能会遇到很大量的特征,这些特征良莠不齐,层次不一,可能有缺失,可能有噪声,可能规模不一致,可能类型不一样,等等问题都需要我们在建模之前,先预处理特征或者叫清洗特征。那么这清洗特征的过程可能涉及多个步骤可能比较复杂,为了代码的简洁,我们可以将所有的预处理过程封装成一个函数,然后直接往模型中传入这个函数就可以啦~~~

接下来我们看看究竟如何做呢?

01 如何使用input_fn自定义输入管道

当使用tf.contrib.learn来训练一个神经网络时,可以将特征,标签数据直接输入到.fit(),.evaluate(),.predict()操作中。比如在笔记04中就使用到了,复看一下代码:

# 将特征与标签数据载入

training_set = tf.contrib.learn.datasets.base.load_csv_with_header( filename=IRIS_TRAINING, target_dtype=np.int, features_dtype=np.float32) test_set = tf.contrib.learn.datasets.base.load_csv_with_header( filename=IRIS_TEST, target_dtype=np.int, features_dtype=np.float32)

# 然后将两个数据喂给.fit()函数去训练classifier.fit(x=training_set.data, y=training_set.target, steps=2000)

当原始数据不需要或几乎很少需要一些额外的预处理时,使用以上的方式到也不为过。然而在实际的业务中我们往往需要去做大量的特征工程,于是tf.contrib.learn支持使用一个用户自定义的输入函数input_fn来封装数据预处理的逻辑,并且将数据通过管道输送到模型中。

1.1 解剖input_fn函数的结构

以下是一个input_fn函数的基本结构:

def my_input_fn(): # Preprocess your data here...(首先预处理你的数据) # ...then return 1) a mapping of feature columns to Tensors with # the corresponding feature data, and 2) a Tensor containing labels # 然后返回新的特征数据与标签数据(都是以tensor的形式) return feature_cols, labels

输入函数的主体包括一个特定的预处理输入数据的逻辑,比如去除一些脏数据,弥补缺失数据,归一化等等。

输入函数的返回是两个部分:

(1)处理后的特征:feature_cols,格式是一个map,key是特征的名称,value是tensor形式的对应的特征列数据

(2)标签数据:labels,一个包含标签数据的tensor

1.2 如何将特征数据转换成Tensors形式

如果你的特征/标签是存储在pandas的dataframe中或者numpy的array中的话,你就需要在返回特征与标签的时候将它们转换成tensor形式哦~那么怎么转换呢,来看一个小例子。

对于连续型数据,你可以使用tf.constant创建一个tensor:

feature_column_data = [1, 2.4, 0, 9.9, 3, 120] feature_tensor = tf.constant(feature_column_data)

对于稀疏型数据,类别下数据,你可以使用tf.SparseTensor来创建tensor:

sparse_tensor = tf.SparseTensor(indices=[[0,1], [2,4]],

values=[6, 0.5],

dense_shape=[3, 5])

可见,tf.SparseTensor有3个参数,分别是:

(1)dense_shape

这是tensor的shape,比如dense_shape=[3,6],表示tensor有36共2个维度;dense_shape=[2,3,4]表示tensor有23*4共3个维度;dense_shape=[9]表示tensor有1个维度,这个维度里有9个元素。

(2)indices

表示在这个tensor中indices索引所在的位置是非0值,其余都是0值。比如[0,0]表示在第1行第1列的值非0.

(3)values

value是一个1维的tensor, 其元素与indices中的索引一一对应,比如indices=[[1,3], [2,4]],values=[18, 3.6],表示在行索引为1列索引为3的位置值为18,在行索引为2列索引为4的位置值为3.6

因此上面的代码意思一目了然了,创建一个稀疏tensor,大小是3*5,在行索引为0列索引为1的位置值为6,在行索引为2,列索引为4的位置值为0.5,其余位置值为0.

打印出来应是:

[[0, 6, 0, 0, 0] [0, 0, 0, 0, 0] [0, 0, 0, 0, 0.5]]

1.3 如何将input_fn数据传给模型

在输入函数input_fn中封装好了特征预处理的逻辑,并且也返回了新的特征与标签。那怎么把这个输入函数或者说新的特征与标签传入模型中呢?

在.fit()操作中有一个参数:input_fn,只要将我们定义好的输入函数传给这个参数即可:

classifier.fit(input_fn=my_input_fn, steps=2000)

但是,极其注意的是绝不能直接这样做:

classifier.fit(input_fn=my_input_fn(training_set), steps=2000)

如果你想直接传参数给输入函数,可以选择令爱几个方法:

(1)再写一个封装函数如下:

def my_input_function_training_set(): return my_input_function(training_set) classifier.fit(input_fn=my_input_fn_training_set, steps=2000)

(2)使用Python’s functools.partial方法:

classifier.fit(input_fn=functools.partial(my_input_function, data_set=training_set), steps=2000)

(3)在lambda中调用输入函数,然后将参数传入input_fn中

classifier.fit(input_fn=lambda: my_input_fn(training_set), steps=2000)

个人建议使用第三种方法。

02 案例实战

2.1 数据介绍

数据集下载地址:https://archive.ics.uci.edu/ml/datasets/Housing

这是一份预测房价的数据,我们用它去训练一个神经网络去预测房价,总共选取9个特征,数据的特征如下:

image_1b9v1tv1s49k19v21sum1fkg1ir29.png-36.8kB

要预测的标签数据是MEDV,是业主自用住宅的价格均值。

在开始建模之前,我们先去下载好 boston_train.csv(训练集), boston_test.csv(测试集), and boston_predict.csv(预测集)这份文件

2.2 加载数据

首先导入需要的库(包括pandas, tensorflow),并且设置logging verbosity为INFO,这样就可以获取到更多的日志信息了。

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import itertoolsimport pandas as pd
import tensorflow as tf  tf.logging.set_verbosity(tf.logging.INFO)

定义一个变量COLUMNS,将所有的特征名称与类别标签名称存储成list并赋值给他。

为了区分特征名称与标签名称,同时也将它们分别春初一个变量。

COLUMNS = ["crim", "zn", "indus", "nox", "rm", "age",          
 "dis", "tax", "ptratio", "medv"]
 FEATURES = ["crim", "zn", "indus", "nox", "rm",            
"age", "dis", "tax", "ptratio"] LABEL = "medv"

然后,将三份数据文件都用pandas.read_csv载入:

第一个参数是数据文件的路径,第二个参数是是否需要取出前后空值,第三个参数是去除的行数,第四个参数是列名

training_set = pd.read_csv("boston_train.csv", skipinitialspace=True,skiprows=1, names=COLUMNS) test_set = pd.read_csv("boston_test.csv", skipinitialspace=True, skiprows=1, names=COLUMNS) prediction_set = pd.read_csv("boston_predict.csv", skipinitialspace=True,skiprows=1, names=COLUMNS)

2.3 定义特征列并且创建回归模型

现在创建一组FeatureColumn作为输入数据,正式指定哪些特征需要被用来训练。在我们的房价预测特征中所有数据都是连续型的值,因此你可以直接使用tf.contrib.layers.real_valued_column()来创建FeatureColumn:

feature_cols = [tf.contrib.layers.real_valued_column(k)

for k in FEATURES]

接着我们来调用DNNRegressor函数实例化一个神经网络回归模型。

这里需要提供3个参数:

feature_columns:一组刚刚定义的特征列 hidden_units:每层隐藏层的神经网络个数 model_dir:模型保存的路径

regressor = tf.contrib.learn.DNNRegressor(feature_columns=feature_cols,

hidden_units=[10, 10],

model_dir="/tmp/boston_model")

2.4 构建输入函数input_ fn

这里我们构建一个输入函数去预处理数据,处理的内容比较简单,只是将用pandas读进来的dataframe形式的数据转换成tensor.

def input_fn(data_set): feature_cols = {k: tf.constant(data_set[k].values)

for k in FEATURES}

labels = tf.constant(data_set[LABEL].values)

return feature_cols, labels

2.5 训练模型

训练模型,我们调用fit()函数,并且将训练数据集training_set作为参数传入

regressor.fit(input_fn=lambda: input_fn(training_set), steps=5000)

运行代码,你会看到有如下日志打印:

INFO:tensorflow:Step 1: loss = 483.179
INFO:tensorflow:Step 101: loss = 81.2072
INFO:tensorflow:Step 201: loss = 72.4354... INFO:tensorflow:Step 1801: loss = 33.4454
INFO:tensorflow:Step 1901: loss = 32.3397
INFO:tensorflow:Step 2001: loss = 32.0053
INFO:tensorflow:Step 4801: loss = 27.2791
INFO:tensorflow:Step 4901: loss = 27.2251
INFO:tensorflow:Saving checkpoints for 5000 into /tmp/boston_model/model.ckpt. INFO:tensorflow:Loss for final step: 27.1674.

2.6 评估模型

模型训练好,就到了评估的时刻了,还是用测试数据集test_set来评估

ev = regressor.evaluate(input_fn=lambda: input_fn(test_set), steps=1)

提取损失并打印:

loss_score = ev["loss"]print("Loss: {0:f}".format(loss_score))

打印结果应如下:

INFO:tensorflow:Eval steps [0,1) for training step 5000.
INFO:tensorflow:Saving evaluation summary for 5000 
step: loss = 11.9221Loss: 11.922098

2.7 使用模型做预测

模型要是评估通过,就可以用来预测新的数据了呢,这里我们使用prediction_set这个数据集,数据中只包含了特征没有标签,需要我们去预测。

y = regressor.predict(input_fn=lambda: input_fn(prediction_set))# .predict() 
returns an iterator; convert to a list and print predictions
predictions = list(itertools.islice(y, 6))
print ("Predictions: {}".format(str(predictions)))

打印结果如下:

Predictions: [ 33.30348587 17.04452896 22.56370163 34.74345398 14.5595397919.58005714]

原文发布于微信公众号 - 人工智能LeadAI(atleadai)

原文发表时间:2018-01-29

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏跟着阿笨一起玩NET

浅谈UML中类之间的五种关系及其在代码中的表现形式

类有很多种提炼角度,需要根据系统地目标、业务的场景,选取合适的角度对事物进行归纳。

402
来自专栏java系列博客

UML类图

2003
来自专栏智能算法

一个程序员怎么才算精通python

我会先给出我对精通Python的理解,然后给出一些Python中有难度的知识点。如果大家在看完我这篇回答之前,已经充分理解了我列出的各个知识点,那么,我相信你...

4239
来自专栏C/C++基础

认识UML类关系——依赖、关联、聚合、组合、泛化

在学习面向对象设计时,类关系涉及依赖、关联、聚合、组合和泛化这五种关系,耦合度依次递增。关于耦合度,可以简单地理解为当一个类发生变更时,对其他类造成的影响程度,...

672
来自专栏同步博客

设计模式六大原则

  单一职责原则又称为单一功能原则,即不要存在多于一个导致类变更的原因。通俗的说,即一个类只负责一项职责。

534
来自专栏微信公众号:Java团长

开发中我们需要遵循的几个设计原则!

在软件开发中,前人对软件系统的设计和开发总结了一些原则和模式, 不管用什么语言做开发,都将对我们系统设计和开发提供指导意义。本文主要将总结这些常见的原则和具体阐...

691
来自专栏技术点滴

算法设计关于递归方程T(n)=aT(n/b)+f(n)之通用解法

算法设计关于递归方程T(n)=aT(n/b)+f(n)之通用解法 在算法设计中经常需要通过递归方程估计算法的时间复杂度T(n),本文针对形如T(n)=aT(n/...

1817
来自专栏Java编程

Java回调机制解读

在一个应用系统中,无论使用何种语言开发,必然存在模块之间的调用,调用的方式分为几种:

2356
来自专栏人工智能LeadAI

讨厌算法的程序员 | 第三章 算法分析基础

时间资源 上一篇,我们知道了如何用循环不变式来证明 算法的正确性,本篇来看另一个重要方面:算法分析。分析算法的目的,是预测算法所需要的资源。资源不仅是指内存、C...

2615
来自专栏微信公众号:Java团长

Java回调机制解读

在一个应用系统中,无论使用何种语言开发,必然存在模块之间的调用,调用的方式分为几种:

591

扫描关注云+社区