动态 | 准确率远超人类病理学家!谷歌用深度学习算法检测癌症

AI科技评论按:为了解决诊断时间有限和诊断结果不一致的问题,谷歌研究院正在研究如何让深度学习在数字病理学领域发挥作用,通过创建一个自动检测算法,在病理学家的工作流中提供辅助工具。本文作者为谷歌的技术主管Martin Stumpe和产品经理Lily Peng,由AI科技评论编译。

在检查患者的生物组织样品后, 病理学家的报告通常是许多疾病的黄金诊断标准。特别是对于癌症,病理学家的诊断对患者的治疗具有深远的影响。病理切片审查是一个非常复杂的任务,需要多年的培训才能做好,丰富的专业知识和经验也是必不可少的。

尽管都经过培训,但不同病理学家对同一患者给出的诊断结果,可能存在实质性的差异,而这可能导致误诊。例如,在某些类型的乳腺癌诊断中,诊断结论一致性竟低至48%,前列腺癌诊断的一致性也同样很低。诊断缺乏一致性低并不少见,因为如果想做出准确的诊断,必须检查大量的信息。病理学家通常只负责审查一张切片上所有可见的生物组织。然而,每个患者可能有许多病理切片,假设以40倍的放大倍数进行数字化切片图像,每个患者的图像数据都超过10亿个像素点。想象一下,要遍历1张1千万像素的照片,并且必须对每个像素的判断结果负责。不用说了,这里有太多的数据需要检查,而时间往往是有限的。

为了解决诊断时间有限和诊断结果不一致的问题,我们正在研究如何让深度学习数字病理学领域发挥作用,通过创建一个自动检测算法,在病理学家的工作流中提供辅助工具。谷歌研究院使用由Radboud大学医学中心提供图像数据来训练诊断算法,这些图片也在2016 ISBI Camelyon Challenge中使用,目前该算法已被优化,用于定位出乳腺癌向乳房相邻的淋巴结扩散。

在乳腺癌扩散定位任务中,使用现成的标准深度学习方法如Inception(也称为GoogLeNet),表现也是相当不错,虽然生成的肿瘤概率预测热图还是存在噪点。我们对这个训练网络做了增强定制,包括用不同的放大倍数的图片来训练模型(非常像病理学家所做的),从训练结果来看,我们有可能训练出一个系统,它的能力可以相当于一个病理学家,甚至有可能超过病理学家的表现,并且它拥有无限的时间来检查病理切片。

图1 左图是来自两个淋巴结活检的图像,中图是早期深度学习算法检测肿瘤的结果,右图是我们当前的成果,注意第二个版本的可见噪声(潜在误判)已降低。

事实上,由该算法产生的预测热图已经改善了很多,该算法的定位得分(FROC)达到89%,明显超过没有时间约束的病理学家,他们的得分仅为73%。我们不是唯一一组认为这种方法是有希望的,其他组别的算法模型在同一数据集中获得了高达81%的分数。对我们来说更令人兴奋的是,我们的模型鲁棒性非常强,从不同的医院使用不同的扫描仪获得的图像都可以识别。相关的详细信息,请参阅谷歌研究院的相关文章“在千兆像素病理图像上检测癌症转移”。

图2 淋巴结活检的特写镜头。组织包含乳腺癌转移以及巨噬细胞,其看起来与肿瘤相似,但是是良性正常组织。我们的算法成功识别肿瘤区域(亮绿色),不会被巨噬细胞干扰。

虽然这些结果看来振奋人心,但有几个重要的注意事项需要考虑:

· 像大多数指标一样,本地化的FROC分数并不是完美的。在这里,FROC分数定义是预设带有少量假阳性的灵敏度,假阳性是指将正常组织错判为肿瘤,灵敏度则是每个载玻片所检测到肿瘤的百分比。但病理学家很少做假阳性的误判,例如上述73%的得分对应于73%的灵敏度和零假阳性。相比之下,假设允许更多的假阳性个数,我们的算法的灵敏度可以提升。如果每个载玻片允许有8个假阳性,我们的算法的灵敏度可达到92%。 · 这些算法在执行训练过的任务时表现良好,但相比人类病理学家,还是缺少丰富的知识和经验。人类病理学家可以检测出模型还没有训练的异常分类,例如炎症过程、自身免疫疾病或其他类型的癌症。 · 为了确保患者得到最佳的临床结果,这些算法需要作为病理学家的辅助工具,融入到他们的工作流中。我们设想我们的算法可以提高病理学家的诊断效率和诊断结果的一致性。例如,病理学家可以通过重点排查最靠前的肿瘤预测区域,以及每个载玻片多达8个假阳性区域,来降低其假阴性率,假阴性是指未检出肿瘤的百分比。另外,这些算法可以让病理学家准确地测量肿瘤大小,这与肿瘤预测的结果相关。

训练模型只是将有趣的研究转化为真实产品的第一步。 从临床验证到监管批准,还有很多困难需要征服。但我们已经起了一个非常有希望的开头,我们希望通过分享我们的工作,能够加快在这个领域的进步。

via Assisting Pathologists in Detecting Cancer with Deep Learning,Google Research Blog

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2017-03-06

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏ATYUN订阅号

【科技】医学界新突破!通过机器学习技术可准确地预测肾脏的生存时间

近日,《肾脏国际报告》发表的一项研究表明,肾脏活检的机器学习和成像分析有助于帮助预测肾脏在慢性肾损伤患者中能充分发挥作用的时间。 ? 研究人员利用深度学习和神经...

34113
来自专栏绿巨人专栏

读书笔记: 博弈论导论 - 02 - 引入不确定性和时间

1113
来自专栏思影科技

NEJM:Waving Hello to Noninvasive Deep-Brain Stimulation

近日多伦多大学Andres M. Lozano等人在新英格兰医学杂志发文,介绍了无创深部脑刺激技术。通过两个频率差异较小的电场信号刺激,激活深部大脑细胞,同时避...

3325
来自专栏指旺研究院

如何用好21世纪最火的神兵利器——“屠龙刀”和“倚天剑”?

看过金庸先生《倚天屠龙记》的朋友们都知道,书中有两大神兵利器分别是:屠龙刀和倚天剑,相传能同时拥有这两件兵器的人在当时就可以称霸武林。同样在科技飞速发展的现在也...

2828
来自专栏思影科技

面向工作记忆过程的双向额顶振荡系统

最近,来自加利福利亚大学Helen Wills神经科学研究所的学者通过研究表明在工作记忆过程中,前额叶皮质区与大脑后皮质区之间具有一套完整的平行双向神经振荡系统...

2575
来自专栏绿巨人专栏

读书笔记: 博弈论导论 - 02 - 引入不确定性和时间

2766
来自专栏人工智能的秘密

黑箱难题阻碍了深度学习的普及与发展

当前,深度学习扛起了人工智能的大旗,让我们了解到了智能机器的能力有多大,但是有个问题就是:没有人知道它内部究竟是怎么运作的。

1795
来自专栏BestSDK

谷歌用深度机器算法检测癌症,准确率高过医学博士!

在检查患者的生物组织样品后, 病理学家的报告通常是许多疾病的黄金诊断标准。特别是对于癌症,病理学家的诊断对患者的治疗具有深远的影响。病理切片审查是一个非常复杂的...

3005
来自专栏机器人网

技术猿 | 称重传感器的基本技术参数

---- ? 1. 额定载荷: 传感器在规定技术指标范围内能够测量的最大轴向负荷。在实际使用时,一般只用额定量程的1/3~2/3。 例如:500kg...

2726
来自专栏量子位

Google用深度学习做癌症病理检测,准确率达89%

王新民 编译自Google Research Blog 量子位·QbitAI 出品 Google Brain技术主管Martin Stumpe和产品经理Lily...

3405

扫描关注云+社区