开发 | NMT训练成本太高?Google Brain用大规模神经机器翻译架构分析给出解决方案

AI科技评论编者按:十年前,Google Translate发布。当时,这项服务背后的核心算法还是基于短语的机器翻译。

而十年后的今天,更先进的神经网络机器翻译( Neural Machine Translation)技术已经使得翻译系统的速度和准确度有了大幅提升。Google发现,在多个样本的翻译中,神经网络机器翻译系统将误差降低了 55%-85%甚至以上。

虽然成就喜人,但这对研究人员来说却远远不够。在他们看来,NMT领域还有太多可提升的空间。

近日,来自Google Brain的四位研究人员Denny Britz, Anna Goldie , Thang Luong, Quoc Le就由NMT训练成本太高这一问题出发,对NMT 架构的超参数进行了大规模分析,并且对建立和扩展NMT构架提出了一些新颖观点和实用建议。研究人员表示,学界还未有过类似的研究。

同时,该论文也已提交了今年的ACL大会(Association for Computational Linguistics)。

以下是为AI科技评论编译的部分论文内容。

摘要

在过去几年里,基于神经机器翻译(NMT)技术的产品系统被越来越多部署在终端客户端中,NMT本身也因此获得了巨大进步。但目前,NMT构架还存在着一个很大的缺点,即训练它们的成本太高,尤其是GPU的收敛时间,有时会达到几天到数周不等。这就使得穷举超参数搜索(exhaustive hyperparameter search)的成本和其他常见神经网络结构一样,让人望而却步。

为此,我们首次对 NMT 架构的超参数进行了大规模分析。我们报告了数百次实验测试的经验结果和方差数(variance numbers),这相当于在标准WMT英译德任务上运行超过250,000 GPU小时数的效果。从实验结果中,我们提出了有关建立和扩展NMT构架的创新观点,也提供了一些实用建议。

作为此次研究成果的一部分,我们也发布了一个开源的NMT框架,让研究员们能轻松使用该新技术,并得出最新试验结果。

研究结论

在研究过程中,我们通过梳理关键因素,以获得最新的实验结果。

有些研究人员可能并不认为“集束搜索调节(beam search tuning)和大多数架构变化同等重要”,以及“使用了当前优化技术的深度模型并不总是优于浅度模型”等说法,但通过实验,我们为这类说法给出了实验证据。

以下是实验收获总结:

  • 使用 2048 维的大型嵌入(embeddings)有最优实验结果,不过优势不大;仅有 128 维的小型嵌入似乎也有足够的能力去捕捉绝大多数必要的语义信息。
  • LSTM Cell 始终比 GRU Cell表现得好。
  • 2-4 层的双向编码器性能最佳。更深层的编码器在训练中不如2-4层的稳定,这一点表现得很明显。不过,如果能接受高质量得优化,更深层的编码器也很有潜力。
  • 深度 4 层解码器略优于较浅层的解码器。残差连接在训练 8 层的解码器时不可或缺,而且,密集的残差连接能使鲁棒性有额外增加。
  • 把额外的关注度参数化(Parameterized additive attention),会产生总体最优结果。
  • 有一个调适良好、具有长度罚分(length penalty)的集束搜索(beam search)很关键。5-10集束宽度搭配1.0长度罚分的工作效果好像不错。

我们还强调了几个重要的研究课题,包括:

  • 高效利用嵌入参数 (4.1)(AI科技评论注:4.1代表论文章节,下同)
  • 注意机制(attention mechanisms)作为加权跳过连接(weighted skip connections)(4.5),而不是记忆单元的角色作用,
  • 深度循环网络需要更好的优化方法(4.3),
  • 超参数变化(hyperparameter variations)还需要更具稳健性的集束搜索(4.6)。

此外,我们还专门发布了一个开源NMT框架,让大家能对该框架的创新点一探究竟,并进行可重复试验,同时我们还发布了所有实验配置的文件。

论文地址:https://arxiv.org/abs/1703.03906

开源地址:https://github.com/google/seq2seq/

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2017-03-15

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器之心

深度 | Vicarious详解新型图式网络:赋予强化学习泛化能力

选自Vicarious 机器之心编译 近日,人工智能初创公司 Vicarious 在官网了发表了一篇名为《General Game Playing with S...

3577
来自专栏机器之心

业界 | OpenAI提出新型机器人训练技术:模拟环境动态随机

27910
来自专栏大数据文摘

2017年你错过了哪些AI圈大事?最全盘点,值得收藏!

2997
来自专栏人工智能头条

深度学习:推动NLP领域发展的新引擎

1815
来自专栏ATYUN订阅号

神经网络新方向:硅芯片将光学信号精准分布到微型类人脑网格

美国国家标准与技术研究院(NIST)的研究人员制作了一种硅芯片,可以精确地将光学信号分布在微型类人脑网格上,展示了神经网络的潜在新设计。

842
来自专栏应兆康的专栏

Andrew Ng - 《Machine Learning Yearning》 Chapter 15-19

Machine Learning Yearning. 全新版本 本书作者是Andrew NG

3537
来自专栏AI科技大本营的专栏

如何评价创作歌手的业务能力?试试让NLP帮你分析一下

【导读】如何评定一首歌的歌词的创造性?有些歌词是否真的套词或假借他人之手?本文作者就尝试用 NLP 技术分析了一位出名却也具有争议的嘻哈歌手 —— Drake ...

1024
来自专栏大数据文摘

AI小视频 | 原创灵魂手绘,聊个5分钟的人工智能

1756
来自专栏量子位

斯坦福公布3D街景数据集:2500万张图像,8个城市模型 | 下载

安妮 编译整理 量子位 出品 | 公众号 QbitAI 近日,斯坦福大学的研究人员公布了一个数据集,其中包含带有相机姿态的街景数据、8个城市的3D模型和拓展的元...

3104
来自专栏新智元

【干货】如何成为深度学习专家的七大步骤

首先为用Buzz做为点击标题的诱饵道歉,但是它确实是起到了一定的作用,并且吸引了大批读者来阅读此文章。 在我们的工作中,经常被问及的问题之一就是“从哪里开始学习...

3538

扫码关注云+社区