贝叶斯文本分类c#版

关于这个话题,博客园已经有多个版本了

这几个版本中,最具有实用性的应该是Pymining版,Pymining可以生成模型,便于复用,同时也讲解的较为清楚,感兴趣的可以去看下原文。

Pymining是基于python的,作为c#控,决定参考Pymining写一个c#版本的分类器,目前完成了朴素贝叶斯分类的移植工作。

下面是使用示例:

           var loadModel = ClassiferSetting.LoadExistModel;
            //loadModel = true;
            Text2Matrix text2Matrix = new Text2Matrix(loadModel);
            ChiSquareFilter chiSquareFilter = new ChiSquareFilter(loadModel);
            NaiveBayes bayes = new NaiveBayes(loadModel);

            if (!loadModel)
            {
                Console.WriteLine("开始模型训练...");

                //var matrix = text2Matrix.CreateTrainMatrix(new SogouRawTextSource(@"E:\语料下载程序\新闻下载\BaiduCrawl\Code\HtmlTest\Jade.Util\Classifier\SogouC.reduced.20061127\SogouC.reduced\Reduced"));
                var matrix = text2Matrix.CreateTrainMatrix(new TuangouTextSource());

                Console.WriteLine("卡方检验中...");

                chiSquareFilter.TrainFilter(matrix);

                Console.WriteLine("训练模型中...");

                bayes.Train(matrix);
            }
            var totalCount = 0;
            var accurent = 0;

            var tuangouTest = new TuangouTextSource(@"E:\语料下载程序\新闻下载\BaiduCrawl\Code\HtmlTest\Jade.Util\Classifier\test.txt");

            while (!tuangouTest.IsEnd)
            {
                totalCount++;
                var raw = tuangouTest.GetNextRawText();
                Console.WriteLine("文本:" + raw.Text);
                Console.WriteLine("标记结果:" + raw.Category);
                var category = GetCategory(raw.Text, bayes, chiSquareFilter, text2Matrix);
                Console.WriteLine("结果:" + category);
                if (raw.Category == category)
                {
                    accurent++;
                }
            }

            Console.WriteLine("正确率:" + accurent * 100 / totalCount + "%");

            Console.ReadLine();

结果:

为了便于大家理解,下面将主要的模块和流程进行介绍。

流程图

        文本模式分类一般的过程就是对训练集提取特征,对于文本来说就是分词,分出来的结果通常比较多,不能全部用来做特征,需要对特征进行降维,然后在使用分类算法(如贝叶斯)生成模型,并以模型来对需要进行分类的文本进行预测。

程序结构

分类程序主要由配置模块,分词模块,特征选取模块,分类模块等几个部分组成,下面逐一介绍:

配置模块

python版本的程序用一个xml来存储配置信息,c#版本继续沿用这个配置信息

<?xml version="1.0" encoding="utf-8" ?>
<config>
  <__global__>
    <term_to_id>model/term_to_id</term_to_id>
    <id_to_term>model/id_to_term</id_to_term>
    <id_to_doc_count>model/id_to_doc_count</id_to_doc_count>
    <class_to_doc_count>model/class_to_doc_count</class_to_doc_count>
    <id_to_idf>model/id_to_idf</id_to_idf>
    <newid_to_id>model/newid_to_id</newid_to_id>
    <class_to_id>model/class_to_id</class_to_id>
    <id_to_class>model/id_to_class</id_to_class>
  </__global__>

  <__filter__>
    <rate>0.3</rate>
    <method>max</method>
    <log_path>model/filter.log</log_path>
    <model_path>model/filter.model</model_path>
  </__filter__>

  <naive_bayes>
    <model_path>model/naive_bayes.model</model_path>
    <log_path>model/naive_bayes.log</log_path>
  </naive_bayes>

  <twc_naive_bayes>
    <model_path>model/naive_bayes.model</model_path>
    <log_path>model/naive_bayes.log</log_path>
  </twc_naive_bayes>

</config>

配置信息主要是存储模型文件相关的文件路径

读取xml就简单了,当然为了方便使用,我们建立几个类

   /// <summary>
    /// 全局配置信息
    /// </summary>
    public class GlobalSetting
    {
        public string TermToId { get; set; }
        public string IdToTerm { get; set; }
        public string IdToDocCount { get; set; }
        public string ClassToDocCount { get; set; }
        public string IdToIdf { get; set; }
        public string NewidToId { get; set; }
        public string ClassToId { get; set; }
        public string IdToClass { get; set; }
    }

    /// <summary>
    /// 卡方设置
    /// </summary>
    public class FilterSetting : TrainModelSetting
    {
        /// <summary>
        /// 特征选取比例
        /// </summary>
        public double Rate { get; set; }

        /// <summary>
        /// avg max
        /// </summary>
        public string Method { get; set; }

    }


    public class TrainModelSetting
    {
        /// <summary>
        /// 日志路径
        /// </summary>
        public string LogPath { get; set; }

        /// <summary>
        /// 模型路径
        /// </summary>
        public string ModelPath { get; set; }

    }

    /// <summary>
    /// 贝叶斯设置
    /// </summary>
    public class NaiveBayesSetting : TrainModelSetting
    {

    }

另外,提供一个供程序访问配置信息的工具类

View ClassiferSetting

分词

要提取特征,首先要进行分词,对c#来说,直接采用盘古分词就可以了,当然,还需要对盘古做下简单的封装

public class PanguSegment : ISegment
    {
        static PanguSegment()
        {
            PanGu.Segment.Init();
        }

        public List<string> DoSegment(string text)
        {
            PanGu.Segment segment = new PanGu.Segment();
            ICollection<WordInfo> words = segment.DoSegment(text);
            return words.Where(w=>w.OriginalWordType != WordType.Numeric).Select(w => w.Word).ToList();
        }
    }

另外,可以添加一个停用词过滤StopWordsHandler

public class StopWordsHandler
    {
        private static string[] stopWordsList = { " ", "的", "我们", "要", "自己", "之", "将", "后", "应", "到", "某", "后", "个", "是", "位", "新", "一", "两", "在", "中", "或", "有", "更" };
        public static bool IsStopWord(string word)
        {
            for (int i = 0; i < stopWordsList.Length; ++i)
            {
                if (word.IndexOf(stopWordsList[i]) != -1)
                    return true;
            }
            return false;
        }

        public static void RemoveStopWord(List words)
        {
            words.RemoveAll(word => word.Trim() == string.Empty || stopWordsList.Contains(word));
        }

    }

读取训练集

分类不是随意做到的,而是要基于以往的知识,也就是需要通过训练集计算概率

为了做到普适性,我们定义一个RawText类来代表原始语料

public class RawText
    {
        public string Text { get; set; }
        public string Category { get; set; }
    }

然后定义接口IRawTextSource来代表训练集,看到IsEnd属性就知道这个接口怎么使用了吧?

public interface IRawTextSource
    {
        bool IsEnd { get; }
        RawText GetNextRawText();
    }

对于搜狗的语料集(点击下载),可以采用下面的方法读取

View Code

同样的,对于python版本的训练集格式,可以使用下面的类来读取

View Code

构建矩阵

在介绍矩阵之前,还需要介绍一个对象GlobalInfo,用来存储矩阵计算过程中需要记录的数据,比如词语和id的映射

与python版本不同的是,为了方便访问,c#版本的GlobalInfo使用单例模式。

View Code

从这里开始进入核心部分

这一部分会构造一个m*n的矩阵,表示数据的部分,每一行表示一篇文档,每一列表示一个feature(单词)

矩阵中的categories是一个m * 1的矩阵,表示每篇文档对应的分类id。

和python不同的是,我为了省事,矩阵对象还包含了一文档文类(罪过),另外为了方便查看特征词,特意添加了一个FeatureWords属性

    public class Matrix
    {
        /// <summary>
        /// 行数目 代表样本个数
        /// </summary>
        public int RowsCount { get; private set; }

        /// <summary>
        /// 列数目 代表词(特征)数目
        /// </summary>
        public int ColsCount { get; private set; }

        /// <summary>
        /// 用于记录文件的词数目[0] = 0,[1] = [0]+ count(1),[2] = [1]+count(2)
        /// </summary>
        public List<int> Rows;

        /// <summary>
        /// 用于记录词id(termId)  与Rows一起可以将文档区分开来
        /// </summary>
        public List<int> Cols;

        /// <summary>
        /// 与cols一一对应,记录单篇文章中term的次数
        /// </summary>
        public List<int> Vals;

        /// <summary>
        /// 记录每篇文章的分类,与Row对应
        /// </summary>
        public List<int> Categories;
        public Matrix(List<int> rows, List<int> cols, List<int> vals, List<int> categories)
        {
            this.Rows = rows;
            this.Cols = cols;
            this.Vals = vals;
            this.Categories = categories;
            if (rows != null && rows.Count > 0)
                this.RowsCount = rows.Count - 1;
            if (cols != null && cols.Count > 0)
                this.ColsCount = cols.Max() + 1;
        }

        private List<string> featureWords;
        public List<string> FeatureWords
        {
            get
            {
                if (Cols != null)
                {
                    featureWords = new List<string>();
                    Cols.ForEach(col => featureWords.Add(GlobalInfo.Instance.IdToTerm[col]));
                }
                return featureWords;
            }
        }
    }

Matrix一定要理解清楚Row和Col分别代表什么,下面来看怎么生成矩阵,代码较长,请展开查看

        public Matrix CreateTrainMatrix(IRawTextSource textSource)
        {
            var rows = new List<int>();
            rows.Add(0);
            var cols = new List<int>();
            var vals = new List<int>();
            var categories = new List<int>();
            // 盘古分词
            var segment = new PanguSegment();

            while (!textSource.IsEnd)
            {
                var rawText = textSource.GetNextRawText();

                if (rawText != null)
                {
                    int classId;

                    // 处理分类
                    if (GlobalInfo.Instance.ClassToId.ContainsKey(rawText.Category))
                    {
                        classId = GlobalInfo.Instance.ClassToId[rawText.Category];
                        GlobalInfo.Instance.ClassToDocCount[classId] += 1;
                    }
                    else
                    {
                        classId = GlobalInfo.Instance.ClassToId.Count;
                        GlobalInfo.Instance.ClassToId.Add(rawText.Category, classId);
                        GlobalInfo.Instance.IdToClass.Add(classId, rawText.Category);
                        GlobalInfo.Instance.ClassToDocCount.Add(classId, 1);
                    }

                    categories.Add(classId);

                    var text = rawText.Text;

                    //分词
                    var wordList = segment.DoSegment(text);

                    // 去停用词
                    StopWordsHandler.RemoveStopWord(wordList);
                    var partCols = new List<int>();
                    var termFres = new Dictionary<int, int>();
                    wordList.ForEach(word =>
                                         {
                                             int termId;
                                             if (!GlobalInfo.Instance.TermToId.ContainsKey(word))
                                             {
                                                 termId = GlobalInfo.Instance.IdToTerm.Count;
                                                 GlobalInfo.Instance.TermToId.Add(word, termId);
                                                 GlobalInfo.Instance.IdToTerm.Add(termId, word);
                                             }
                                             else
                                             {
                                                 termId = GlobalInfo.Instance.TermToId[word];
                                             }

                                             // partCols 记录termId
                                             if (!partCols.Contains(termId))
                                             {
                                                 partCols.Add(termId);
                                             }

                                             //termFres 记录termid出现的次数
                                             if (!termFres.ContainsKey(termId))
                                             {
                                                 termFres[termId] = 1;
                                             }
                                             else
                                             {
                                                 termFres[termId] += 1;
                                             }

                                         });

                    partCols.Sort();
                    partCols.ForEach(col =>
                                         {
                                             cols.Add(col);
                                             vals.Add(termFres[col]);
                                             if (!GlobalInfo.Instance.IdToDocCount.ContainsKey(col))
                                             {
                                                 GlobalInfo.Instance.IdToDocCount.Add(col, 1);
                                             }
                                             else
                                             {
                                                 GlobalInfo.Instance.IdToDocCount[col] += 1;
                                             }
                                         });
                    //fill rows rows记录前n个句子的词语数目之和
                    rows.Add(rows[rows.Count - 1] + partCols.Count);
                }
            }


            //fill GlobalInfo's idToIdf 计算idf 某一特定词语的IDF,可以由总文件数目除以包含该词语之文件的数目,再将得到的商取对数得到

            foreach (var termId in GlobalInfo.Instance.TermToId.Values)
            {
                GlobalInfo.Instance.IdToIdf[termId] =
                    Math.Log(d: (rows.Count - 1) / (GlobalInfo.Instance.IdToDocCount[termId] + 1));
            }

            this.Save();

            this.IsTrain = true;

            return new Matrix(rows, cols, vals, categories);
        }

特征降维

选取适合的特征对提高分类正确率有重要的帮助作用,c#版本选取chi-square,即卡方检验

卡方计算公式: t: term c: category X^2(t, c) = N * (AD - CB)^2 ____________________ (A+C)(B+D)(A+B)(C+D) A,B,C,D is doc-count A: belong to c, include t B: Not belong to c, include t C: belong to c, Not include t D: Not belong to c, Not include t

B = t's doc-count - A C = c's doc-count - A D = N - A - B - C

得分计算: and score of t can be calculated by n X^2(t) = sigma p(ci)X^2(t,ci) (avg) i X^2(t) = max { X^2(t,c) } (max)

下面是对应的代码代码执行完成后,会将选取出来的特征词写到日志文件中:

        /// <summary>
        /// 训练
        ///  卡方计算公式:
        ///  t: term
        ///  c: category
        ///  X^2(t, c) =   N * (AD - CB)^2
        ///             ____________________
        ///             (A+C)(B+D)(A+B)(C+D)
        ///  A,B,C,D is doc-count
        ///  A:     belong to c,     include t
        ///  B: Not belong to c,     include t
        ///  C:     belong to c, Not include t
        ///  D: Not belong to c, Not include t
        /// 
        ///  B = t's doc-count - A
        ///  C = c's doc-count - A
        ///  D = N - A - B - C
        /// and score of t can be calculated by next 2 formulations:
        /// X^2(t) = sigma p(ci)X^2(t,ci) (avg)
        ///            i
        /// X^2(t) = max { X^2(t,c) }     (max)
        /// """
        /// </summary>
        /// <param name="matrix"></param>
        public void TrainFilter(Matrix matrix)
        {
            if (matrix.RowsCount != matrix.Categories.Count)
            {
                throw new Exception("ERROR!,matrix.RowsCount shoud be equal to matrix.Categories.Count");
            }

            var distinctCategories = matrix.Categories.Distinct().ToList();
            distinctCategories.Sort();

            //#create a table stores X^2(t, c)
            // #create a table stores A(belong to c, and include t 创建二维数组
            ChiTable = new List<List<double>>();
            var data = new List<double>();
            for (var j = 0; j < matrix.ColsCount; j++)
            {
                data.Add(0);
            }

            for (var i = 0; i < distinctCategories.Count; i++)
            {
                ChiTable.Add(data.AsReadOnly().ToList());
            }

            // atable [category][term] - count
            ATable = ChiTable.AsReadOnly().ToList();

            for (var row = 0; row < matrix.RowsCount; row++)
            {
                for (var col = matrix.Rows[row]; col < matrix.Rows[row + 1]; col++)
                {
                    var categoryId = matrix.Categories[row];
                    var termId = matrix.Cols[col];
                    ATable[categoryId][termId] += 1;
                }
            }

            // 总文档数
            var n = matrix.RowsCount;

            // 计算卡方
            for (var t = 0; t < matrix.ColsCount; t++)
            {
                for (var cc = 0; cc < distinctCategories.Count; cc++)
                {
                    var a = ATable[distinctCategories[cc]][matrix.Cols[t]]; // 属于分类cc且包含词t的数目
                    var b = GlobalInfo.Instance.IdToDocCount[t] - a; // 包含t但是不属于分类的文档 = t的总数-属于cc的数目
                    var c = GlobalInfo.Instance.ClassToDocCount[distinctCategories[cc]] - a;  // 属于分类cc但不包含t的数目 = c的数目 - 属于分类包含t
                    var d = n - a - b - c; // 既不属于c又不包含t的数目
                    //#get X^2(t, c)
                    var numberator = (n) * (a * d - c * b) * (a * d - c * b) + 1;
                    var denominator = (a + c) * (b + d) * (a + b) * (c + d) + 1;
                    ChiTable[distinctCategories[cc]][t] = numberator / denominator;
                }
            }

            // chiScore[t][2]  : chiScore[t][0] = score,chiScore[t][1]  = colIndex
            var chiScore = new List<List<double>>();
            for (var i = 0; i < matrix.ColsCount; i++)
            {
                var c = new List<double>();
                for (var j = 0; j < 2; j++)
                {
                    c.Add(0);
                }
                chiScore.Add(c);
            }

            // avg 函数时 最终得分 X^2(t) = sigma p(ci)X^2(t,ci)  p(ci)为类别的先验概率
            if (this.Method == "avg")
            {
                // 构造类别先验概率pc [category] - categoyCount/n
                var priorC = new double[distinctCategories.Count + 1];
                for (var i = 0; i < distinctCategories.Count; i++)
                {
                    priorC[distinctCategories[i]] = (double)GlobalInfo.Instance.ClassToDocCount[distinctCategories[i]] / n;
                }

                // 计算得分
                for (var t = 0; t < matrix.ColsCount; t++)
                {
                    chiScore[t][1] = t;
                    for (var c = 0; c < distinctCategories.Count; c++)
                    {
                        chiScore[t][0] += priorC[distinctCategories[c]] * ChiTable[distinctCategories[c]][t];
                    }
                }
            }
            else
            {
                //method == "max"
                // calculate score of each t
                for (var t = 0; t < matrix.ColsCount; t++)
                {
                    chiScore[t][1] = t;
                    // 取最大值
                    for (var c = 0; c < distinctCategories.Count; c++)
                    {
                        if (chiScore[t][0] < ChiTable[distinctCategories[c]][t])
                            chiScore[t][0] = ChiTable[distinctCategories[c]][t];
                    }
                }

            }

            // 比较得分
            chiScore.Sort(new ScoreCompare());
            chiScore.Reverse();

            #region
            var idMap = new int[matrix.ColsCount];

            // add un-selected feature-id to idmap
            for (var i = (int)(ClassiferSetting.FilterSetting.Rate * chiScore.Count); i < chiScore.Count; i++)
            {
                // 将未选中的标记为-1
                var termId = chiScore[i][1];
                idMap[(int)termId] = -1;
            }
            var offset = 0;
            for (var t = 0; t < matrix.ColsCount; t++)
            {
                if (idMap[t] < 0)
                {
                    offset += 1;
                }
                else
                {
                    idMap[t] = t - offset;
                    GlobalInfo.Instance.NewIdToId[t - offset] = t;
                }
            }

            this.IdMap = new List<int>(idMap);
            #endregion

            StringBuilder stringBuilder = new StringBuilder();
            stringBuilder.AppendLine("chiSquare info:");
            stringBuilder.AppendLine("=======selected========");
            for (var i = 0; i < chiScore.Count; i++)
            {
                if (i == (int)(ClassiferSetting.FilterSetting.Rate * chiScore.Count))
                {
                    stringBuilder.AppendLine("========unselected=======");
                }
                var term = GlobalInfo.Instance.IdToTerm[(int)chiScore[i][1]];
                var score = chiScore[i][0];
                stringBuilder.AppendLine(string.Format("{0} {1}", term, score));
            }
            File.WriteAllText(ClassiferSetting.FilterSetting.LogPath, stringBuilder.ToString());

            GlobalInfo.Instance.Save();

            this.Save();

            this.IsTrain = true;
        }

贝叶斯算法

具体可以参见开头推荐的几篇文章,知道P(C|X) = P(X|C)P(C)/P(X)就可以了

下面是具体的实现代码 

        public List<List<double>> vTable { get; set; }

        public List<double> Prior { get; set; }

        public void Train(Matrix matrix)
        {
            if (matrix.RowsCount != matrix.Categories.Count)
            {
                throw new Exception("ERROR!,matrix.RowsCount shoud be equal to matrix.Categories.Count");
            }

            //  #calculate prior of each class
            //  #1. init cPrior:

            var distinctCategories = matrix.Categories.Distinct().ToList();
            distinctCategories.Sort();
            var cPrior = new double[distinctCategories.Count + 1];

            // 2. fill cPrior
            matrix.Categories.ForEach(classid => cPrior[classid] += 1);

            //#calculate likehood of each term
            // #1. init vTable:  vTable[termId][Category]
            vTable = new List<List<double>>();
            for (var i = 0; i < matrix.ColsCount; i++)
            {
                var data = cPrior.Select(t => 0d).ToList();
                vTable.Add(data);
            }

            // #2. fill vTable
            for (var i = 0; i < matrix.RowsCount; i++)
            {
                for (var j = matrix.Rows[i]; j < matrix.Rows[i + 1]; j++)
                {
                    vTable[matrix.Cols[j]][matrix.Categories[i]] += 1;
                }
            }

            //#normalize vTable
            for (var i = 0; i < matrix.ColsCount; i++)
            {
                for (var j = 0; j < cPrior.Length; j++)
                {
                    // P(x|c) =  term 个数 / 分类个数  
                    if (cPrior[j] > 1e-10)
                        vTable[i][j] /= (cPrior[j]);
                }
            }

            //#normalize cPrior P(C) = C/TC
            for (var i = 0; i < cPrior.Length; i++)
            {
                cPrior[i] /= matrix.Categories.Count;
            }

            this.Prior = new List<double>(cPrior);

            this.IsTrain = true;

            this.Save();

        }

预测

引用作者的话:

PyMining的训练、测试的过程可以独立的运行,可以先训练出一个模型,等到有需要的时候再进行测试,所以在训练的过程中,有一些数据(比如说chi-square filter)中的黑名单,将会保存到文件中去。如果想单独的运行测试程序,请参考下面的一段代码,调用了NaiveBayes.Test方法后,返回的resultY就是一个m * 1的矩阵(m是测试文档的个数),表示对于每一篇测试文档使用模型测试得到的标签(属于0,1,2,3)中的哪一个,precision是测试的准确率。

预测首先是构造一个矩阵,构造过程和训练时类似:

        public Matrix CreatePredictSample(string text)
        {
            if (!this.IsTrain)
            {
                throw new Exception("请选训练模型");
            }

            // 盘古分词
            var segment = new PanguSegment();
            //分词
            var wordList = segment.DoSegment(text);

            // 去停用词
            StopWordsHandler.RemoveStopWord(wordList);
            var cols = new List<int>();
            var vals = new List<int>();
            var partCols = new List<int>();
            var termFres = new Dictionary<int, int>();
            wordList.ForEach(word =>
            {
                int termId;
                if (GlobalInfo.Instance.TermToId.ContainsKey(word))
                {
                    termId = GlobalInfo.Instance.TermToId[word];

                    if (!partCols.Contains(termId))
                        partCols.Add(termId);

                    //termFres 记录termid出现的次数
                    if (!termFres.ContainsKey(termId))
                    {
                        termFres[termId] = 1;
                    }
                    else
                    {
                        termFres[termId] += 1;
                    }
                }

            });

            partCols.Sort();
            partCols.ForEach(col =>
            {
                cols.Add(col);
                vals.Add(termFres[col]);
            });

            return new Matrix(null, cols, vals, null);
        }

然后将构造出来的矩阵进行降维,只选取卡方选择出来的词语做特征

        public void SampleFilter(Matrix matrix)
        {
            if (!this.IsTrain)
            {
                throw new Exception("请选训练模型");
            }
            //#filter sample
            var newCols = new List<int>();
            var newVals = new List<int>();
            for (var c = 0; c < matrix.Cols.Count; c++)
            {
                if (IdMap[matrix.Cols[c]] >= 0)
                {
                    newCols.Add(matrix.Cols[c]);
                    newVals.Add(matrix.Vals[c]);
                }
            }
            matrix.Vals = newVals;
            matrix.Cols = newCols;
        }

最后将选取相互来的特征交给贝叶斯算法进行计算,选取得分最高的做为结果

        /// <summary>
        /// 测试
        /// </summary>
        /// <param name="matrix"></param>
        /// <returns></returns>
        public string TestSample(Matrix matrix)
        {
            var targetP = new List<double>();
            var maxP = -1000000000d;
            var best = -1;
            // 计算最大的P(C)*P(X|C)
            for (var target = 0; target < this.Prior.Count; target++)
            {
                var curP = 100D; // 放大100倍
                curP *= this.Prior[target];

                for (var c = 0; c < matrix.Cols.Count; c++)
                {
                    if (this.vTable[matrix.Cols[c]][target] == 0)
                    {
                        curP *= 1e-7;
                    }
                    else
                    {
                        curP *= vTable[matrix.Cols[c]][target];
                    }
                }
                targetP.Add(curP);
                if (curP > maxP)
                {
                    best = target;
                    maxP = curP;
                }
            }

            return GlobalInfo.Instance.IdToClass[best];

        }

模型的保存

模型的计算其实需要较长的时间,特别是当训练集较大的时候,所以我们可以将训练好的模型保存起来

下面是保存贝叶斯模型的code

        /// <summary>
        /// 贝叶斯模型
        /// </summary>
        [Serializable]
        public class NaiveBayesModel
        {
            public List<List<double>> vTable { get; set; }
            public List<double> Prior { get; set; }
        }

        public override void Save()
        {
            try
            {
                var model = new NaiveBayesModel { vTable = this.vTable, Prior = this.Prior };
                SerializeHelper helper = new SerializeHelper();
                helper.ToBinaryFile(model, ClassiferSetting.NaiveBayesSetting.ModelPath);
            }
            catch
            {
                Console.WriteLine("加载卡方模型失败");
            }
        }

        public override void Load()
        {
            try
            {
                Console.WriteLine("加载贝叶斯模型……");
                SerializeHelper helper = new SerializeHelper();
                var model = (NaiveBayesModel)helper.FromBinaryFile<NaiveBayesModel>(ClassiferSetting.NaiveBayesSetting.ModelPath);
                this.vTable = model.vTable;
                this.Prior = model.Prior;
            }
            catch
            {
                Console.WriteLine("加载贝叶斯模型失败");
            }
        }

 源代码下载 数据请自备

有什么意见或者问题欢迎留言

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏落影的专栏

Metal图像处理——直方图均衡化

首先,我们用直方图来表示一张图像:横坐标代表的是颜色值,纵坐标代表的是该颜色值在图像中出现次数。

2413
来自专栏程序员互动联盟

【专业技术】音频专业参数揭秘

存在问题: 声音是游戏必备的要数,汤姆猫你变声又多少人没玩过?那在底层我们是怎么去做的呢? 解决方案: 我们就以PCM文件格式来侃侃音频模数话 P...

3013
来自专栏SnailTyan

Caffe源码解析(一) —— caffe.proto

caffe.proto是caffe数据结构定义的主要文件,本文主要是在caffe.proto代码的基础上加上了部分中文注释,其中的内容与caffe的protot...

3575
来自专栏iOS技术杂谈

Core ML简介及实时目标检测及Caffe TensorFlow coremltools模型转换

Core ML简介及实时目标检测,Caffe、Tensorflow与Core ML模型转换、Vision库的使用 转载请注明出处 https://cloud.t...

4726
来自专栏用户2442861的专栏

Caffe学习:Blobs, Layers, and Nets

-注意:网络结构是设备无关的,Blob和Layer=隐藏了模型定义的具体实现细节。定义网络结构后,可以通过Caffe::mode()或者Caffe::set_m...

320
来自专栏利炳根的专栏

学习笔记TF060:图像语音结合,看图说话

实现人工智能3要素:语法(syntax)、语义(semantics)、推理(inference)。语言、视觉。通过语法(语言语法解析、视觉三维结构解析)和语义(...

3781
来自专栏鸿的学习笔记

写给开发者的机器学习指南(七)

Classifying email as spam or ham (NaiveBayes)

901
来自专栏有趣的Python

13- 深度学习之神经网络核心原理与算法-TensorFlow介绍与框架挑选

2248
来自专栏程序生活

斯坦福tensorflow教程-tensorflow 实现逻辑回归03_logreg_placeholder.py实验结果utils.py

1543
来自专栏WOLFRAM

Mathematica 之微分特征系统

1286

扫描关注云+社区