业界 | 一窥谷歌神经机器翻译模型真面貌,其底层框架开源!

去年,谷歌发布了 Google Neural Machine Translation (GNMT),即谷歌神经机器翻译,一个 sequence-to-sequence (“seq2seq”) 的模型。现在,它已经用于谷歌翻译的产品系统。

虽然消费者感受到的提升并不十分明显,谷歌宣称,GNMT 对翻译质量带来了巨大飞跃。

但谷歌想做的显然不止于此。其在官方博客表示:“由于外部研究人员无法获取训练这些模型的框架,GNMT 的影响力受到了束缚。”

如何把该技术的影响力最大化?答案只有一个——开源。

因而,谷歌于昨晚发布了 tf-seq2seq —— 基于 TensorFlow 的 seq2seq 框架。谷歌表示,它使开发者试验 seq2seq 模型变得更方便,更容易达到一流的效果。另外,tf-seq2seq 的代码库很干净并且模块化,保留了全部的测试覆盖,并把所有功能写入文件。

该框架支持标准 seq2seq 模型的多种配置,比如编码器/解码器的深度、注意力机制(attention mechanism)、RNN 单元类型以及 beam size。这样的多功能性,能帮助研究人员找到最优的超参数,也使它超过了其他框架。详情请参考谷歌论文《Massive Exploration of Neural Machine Translation Architectures》。

上图所示,是一个从中文到英文的 seq2seq 翻译模型。每一个时间步骤,编码器接收一个汉字以及它的上一个状态(黑色箭头),然后生成输出矢量(蓝色箭头)。下一步,解码器一个词一个词地生成英语翻译。在每一个时间步骤,解码器接收上一个字词、上一个状态、所有编码器的加权输出和,以生成下一个英语词汇。雷锋网提醒,在谷歌的执行中,他们使用 wordpieces 来处理生僻字词。

除了机器翻译,tf-seq2seq 还能被应用到其他 sequence-to-sequence 任务上;即任何给定输入顺序、需要学习输出顺序的任务。这包括 machine summarization、图像抓取、语音识别、对话建模。谷歌自承,在设计该框架时可以说是十分地仔细,才能维持这个层次的广适性,并提供人性化的教程、预处理数据以及其他的机器翻译功能。

谷歌在博客表示:

“我们希望,你会用 tf-seq2seq 来加速(或起步)你的深度学习研究。我们欢迎你对 GitHub 资源库的贡献。有一系列公开的问题需要你的帮助!”

GitHub 地址:https://github.com/google/seq2seq

GitHub 资源库:https://google.github.io/seq2seq/nmt/

Via Googleblog

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2017-04-12

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏AI研习社

看过10万个视频 AI才能识别你的脑残操作 | 2分钟读论文

来源 / Two Minute Papers 翻译 / 朱婷 校对 / 李宇琛 整理 / 雷锋字幕组 AI 研习社出品系列短视频《 2 分钟论文 》,带大家用...

2745
来自专栏AI科技评论

视频 | 深大推出新算法: GAN 非平稳纹理合成

由计算机图形学和AI相结合的领域称为纹理合成,周期性纹理合成比较简单,但是具有结构的纹理合成相当复杂,这篇论文的卖点在于,可以高效地同时把图像的内容和对称信息考...

992
来自专栏CVer

大牛分享 | 李航教授展望自然语言对话领域:现状与未来

本文经机器之心(微信公众号:almosthuman2014)授权转载,禁止二次转载

930
来自专栏编程

Python数据挖掘学习路线是什么?学习Python学什么?

学习Python数据挖掘,你有明确的路线吗,学任何东西首先你要知道学习它的路线,了解了路线才能更容易学习,学习起来才不会非常费劲,进入正题,看看千锋教育的Pyt...

19810
来自专栏小樱的经验随笔

浅谈强化学习的方法及学习路线

介绍 目前,对于全球科学家而言,“如何去学习一种新技能”成为了一个最基本的研究问题。为什么要解决这个问题的初衷是显而易见的,如果我们理解了这个问题,那么我们可以...

3619
来自专栏PPV课数据科学社区

从零实现来理解机器学习算法:书籍推荐及障碍的克服

【编者按】并非所有的开发者都有机器学习算法的基础知识,那么开发者如何从零入门来学习好机器学习算法呢?本文总结推荐了一些从零开始学习机器学习算法的办法,包括推荐了...

3145
来自专栏Pytorch实践

机器是如何做阅读理解的?

机器阅读理解 斯坦福有个很重要的比赛,就是让机器完成阅读理解题目,即给定一篇文章,让机器理解文章含义进行题目回复。每年这一比赛都是国际性的,引来了业界、学术界的...

3417
来自专栏量子位

Facebook开源问答系统DrQA:基于单一信源回答开放域提问

问耕 编译整理 量子位 出品 | 公众号 QbitAI 今天一大早,Yann LeCun就转发了一条消息:Facebook开源了DrQA的代码。 DrQA是一个...

3427
来自专栏人工智能

你该掌握的AI技能:强化学习01

题图由人工智能设计师完成 最近在看一些强化学习的书籍,学习的过程就是要不断的输入,查找资料,理解各种资料,然后输出,总结学习心得,再次输入,输出。不断的重复输入...

1838
来自专栏崔庆才的专栏

浅谈强化学习的方法及学习路线

1717

扫描关注云+社区