开发 | 史上最简洁易懂教程 用Excel理解梯度下降

AI科技评论按:本文作者为 Jahnavi Mahanta,前 American Express (美国运通公司)资深机器学习工程师、深度学习在线教育网站 Deeplearningtrack 联合创始人。

Jahnavi Mahanta:对算法的作用建立直觉性的理解——在我刚入门机器学习的时候,这让我觉得非常困难。不仅仅是因为理解数学理论和符号本身不容易,也因为它很无聊。我到线上教程里找办法,但里面只有公式或高级别的解释,在大多数情况下并不会深入细节。

就在那时,一名数据科学同事介绍给我一个新办法——用 Excel 表格来实现算法,该方法让我拍案叫绝。后来,不论是任何算法,我会试着小规模地在 Excel 上学习它——相信我,对于提升你对该算法的理解、完全领会它的数学美感,这个法子简直是奇迹。

案例

让我用一个例子向各位解释。

大多数数据科学算法是优化问题。而这方面最常使用的算法是梯度下降。

或许梯度下降听起来很玄,但读完这篇文章之后,你对它的感觉大概会改变。

这里用住宅价格预测问题作为例子。

现在,有了历史住宅数据,我们需要创建一个模型,给定一个新住宅的面积能预测其价格。

任务:对于一个新房子,给定面积 X,价格 Y 是多少?

让我们从绘制历史住宅数据开始。

现在,我们会用一个简单的线性模型,用一条线来匹配历史数据,根据面积 X 来预测新住宅的价格 Ypred。

上图中,红线给出了不同面积下的预测价格 Ypred。

Ypred = a+bX

蓝线是来自历史数据的实际住宅价格 Yactual。

Yactual 和 Ypred 之间的差距,即黄色虚线,是预测误差 E。

我们需要发现一条使权重 a,b 获得最优值的直线,通过降低预测误差、提高预测精度,实现对历史数据的最佳匹配。

所以,目标是找到最优 a, b,使 Yactual 和 Ypred 之间的误差 E 最小化。

误差的平方和 (SSE) = ½ a (实际价格 – 预测价格)2= ½ a(Y – Ypred)2

(AI科技评论提醒,请注意衡量误差的方法不止一种,这只是其中一个)

这时便是梯度下降登场的时候。梯度下降是一种优化算法,能找到降低预测误差的最优权重 (a,b) 。

理解梯度下降

现在,我们一步步来理解梯度下降算法:

  1. 用随机值和计算误差(SSE)初始化权重 a 和 b。
  2. 计算梯度,即当权重(a & b)从随机初始值发生小幅增减时,SSE 的变动。这帮助我们把 a & b 的值,向着最小化 SSE 的方向移动。
  3. 用梯度调整权重,达到最优值,使 SSE 最小化。
  4. 使用新权重来做预测,计算新 SSE。
  5. 重复第二、第三步,直到对权重的调整不再能有效降低误差。

我在 Excel 上进行了上述每一步,但在查看之前,我们首先要把数据标准化,因为这让优化过程更快。

第一步

用随机值的 a、b 初始化直线 Ypred = a + b X,计算预测误差 SSE。

第二步

计算不同权重的误差梯度。

∂SSE/∂a = – (Y-YP)

∂SSE/∂b = – (Y-YP)X

这里, SSE=½ (Y-YP)2 = ½(Y-(a+bX))2

你需要懂一点微积分,但没有别的要求了。

∂SSE/∂a、∂SSE/∂b 是梯度,它们基于 SSE 给出 a、b 移动的方向。

第三步

用梯度调整权重,达到最小化 SSE 的最优值

我们需要更新 a、b 的随机值,来让我们朝着最优 a、b 的方向移动。

更新规则:

  • a – ∂SSE/∂a
  • b – ∂SSE/∂b

因此:

  1. 新的 a = a – r * ∂SSE/∂a = 0.45-0.01*3.300 = 0.42
  2. 新的 b = b – r * ∂SSE/∂b= 0.75-0.01*1.545 = 0.73

这里,r 是学习率= 0.01, 是权重调整的速率。

第四步

使用新的 a、b 做预测,计算总的 SSE。

你可以看到,在新预测上 总的 SSE 从 0.677 降到了 0.553。这意味着预测精度在提升。

第五步

重复第三、第四步直到对 a、b 的调整无法有效降低误差。这时,我们已经达到了最优 a、b,以及最高的预测精度。

这便是梯度下降算法。该优化算法以及它的变种是许多机器学习算法的核心,比如深度网络甚至是深度学习。

via kdnuggets,AI科技评论编译。

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2017-04-30

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏计算机视觉战队

各类的梯度优化

梯度下降是最流行的优化算法之一并且目前为止是优化神经网络最常见的算法。与此同时,每一个先进的深度学习库都包含各种算法实现的梯度下降(比如lasagne, caf...

3536
来自专栏人工智能LeadAI

深度学习最常用的学习算法:Adam优化算法

听说你了解深度学习最常用的学习算法:Adam优化算法?-深度学习世界。 深度学习常常需要大量的时间和机算资源进行训练,这也是困扰深度学习算法开发的重大原因。虽然...

9969
来自专栏MelonTeam专栏

跬步神经网络1-基本模型解析

导语: 最近开始看NN,很多疑问。微积分什么的早丢了,边看边查,记录备忘。 本篇主要是针对最基本的网络模型,解释反向传播(backpropagation)原理。...

2049
来自专栏marsggbo

DeepLearning.ai学习笔记(二)改善深层神经网络:超参数调试、正则化以及优化--Week2优化算法

1. Mini-batch梯度下降法 介绍 假设我们的数据量非常多,达到了500万以上,那么此时如果按照传统的梯度下降算法,那么训练模型所花费的时间将非常巨大,...

2106
来自专栏人工智能头条

深度学习优化器算法详解:梯度更新规则+缺点+如何选择

902
来自专栏林欣哲

10分钟看懂Batch Normalization的好处

Batch normalization是一个用于优化训练神经网络的技巧。具备有以下几个优点 1. 训练的更快 因为在每一轮训练中的前向传播和反响传播的额外计算会...

3776
来自专栏计算机视觉战队

机器学习------令人头疼的正则化项

监督机器学习问题无非就是在规则化参数的同时最小化误差。最小化误差是为了让模型拟合训练数据,而规则化参数是防止模型过分拟合训练数据,但训练误差小并不是最终目标,最...

3734
来自专栏决胜机器学习

深层神经网络参数调优(四) ——adam算法、α衰减与局部最优

深层神经网络参数调优(四)——adam算法、α衰减与局部最优 (原创内容,转载请注明来源,谢谢) 一、概述 本文主要讲解另外一种思想的梯度下降——adam,并...

4696
来自专栏机器之心

深度 | 从修正Adam到理解泛化:概览2017年深度学习优化算法的最新研究进展

选自Ruder Blog 作者:Sebastian Ruder 机器之心编译 参与:刘晓坤、路雪、蒋思源 Sebastian Ruder 的这篇博客总结了 20...

36712
来自专栏计算机视觉战队

梯度优化

梯度下降是最流行的优化算法之一并且目前为止是优化神经网络最常见的算法。与此同时,每一个先进的深度学习库都包含各种算法实现的梯度下降(比如lasagne, caf...

3699

扫码关注云+社区