Stanford机器学习笔记-8. 支持向量机(SVMs)概述

8. Support Vector Machines(SVMs)

Content 8. Support Vector Machines(SVMs)       8.1 Optimization Objection       8.2 Large margin intuition       8.3 Mathematics Behind Large Margin Classification       8.4 Kernels       8.5 Using a SVM         8.5.1 Multi-class Classification         8.5.2 Logistic Regression vs. SVMs

8.1 Optimization Objection

支持向量机(Support Vector Machine: SVM)是一种非常有用的监督式机器学习算法。首先回顾一下Logistic回归,根据log()函数以及Sigmoid函数的性质,有:

同时,Logistic回归的代价函数(未正则化)如下:

为得到SVM的代价函数,我们作如下修改:

因此,对比Logistic的优化目标

SVM的优化目标如下:

注1:事实上,上述公式中的Cost0与Cost1函数是一种称为hinge损失替代损失(surrogate loss)函数,其他常见的替代损失函数有指数损失对率损失,具体参见《机器学习》P129 周志华)

注2:注意参数C和λ的对应关系: C与(1 / λ)成正相关。

8.2 Large margin intuition

根据8.1中的代价函数,为使代价函数最小,有如下结论:

现假设C很大(如C=100000),为使代价函数最小,我们希望

所以代价函数就变为:

所以问题就变成:

该问题最后的优化结果是找到具有"最大间隔"(maximum margin)的划分超平面,所以支持向量机又称大间距分类器(large margin classifier)。那么什么是间隔? 为什么这样优化就可以找到最大间隔?首先,我们通过图8-1所示的二维的0/1线性分类情况来直观感受。

图8-1 SVM Decision Boundary: Linearly separable case

直观上,应该去找位于两类训练样本"正中间"的划分超平面,即图8-1的黑色直线(二维),因为该划分超平面对训练样本局部扰动的"容忍"性最好。例如,图中的粉色和绿色直线,一旦输入数据稍有变化,将会得到错误的预测。换言之,这个划分超平面所产生的分类结果是最鲁棒的,对要预测数据集的泛化能力最强。而两条蓝色直线之间的距离就称为间隔(margin)。下一节将从数学角度来解释间隔与最大间隔的优化原理。

8.3 Mathematics Behind Large Margin Classification

首先介绍一些数学知识。

  • 2-范数(2-norm): 也可称长度(length),是二维或三维空间向量长度的推广,向量u记为||u||。例如,对于向量u = [ u1, u2, u3, u4],||u|| = sqrt(u1^2 + u2^2 + u3^2 + u4^2)
  • 向量内积(Vector Inner Product): 设向量a = [a1, a2, … , an],向量b = [b1, b2, … , bn],a和b的的内积定义为:a · b = a1b1 + a2b2 + … + anbn 。向量内积是几何向量数量积(点积)的推广,可以理解为向量a在向量b上的投影长度(范数)和向量b的长度的乘积。
图8-2 两种不同间距的情况

8.4 Kernels

上述的讨论都是基于线性可分的样本,即存在一个划分超平面可以将训练样本正确分类,然而现实世界存在大量复杂的,非线性分类问题(如4.4.2节的异或/同或问题)。Logistic回归处理非线性问题可以通过引入多项式特征量作为新的特征量;神经网络通过引入隐藏层,逐层进化解决非线性分类问题;而SVM是通过引入核函数(kernel function)来解决非线性问题。具体做法如下:

对于第二个问题,常用的核函数有线性核,高斯核,多项式核,Sigmoid核,拉普拉斯核等,现以常用的高斯核(Gaussian)为例。

高斯核具有如下性质:

图8-3 参数对高斯核的影响举例
  • 如何选择参数?

下面对SVM的参数对偏差和方差的影响做简要分析:

  • C: 由于C和(1 / λ)正相关,结合6.4.2节对λ的分析有:

8.5 Using a SVM

上文简单的介绍了SVM的优化原理以及核函数的使用方式。在实际应用SVM中,我们不需要自己去实现SVM的训练算法来得到参数

通常是使用现有的软件包(如liblinear, libsvm)。

但是下面的工作是我们需要做的:

  • 选择参数C的值
  • 选择并实现核函数
    • 如果核函数带参数,需要选择核函数的参数,例如高斯核需要选择
    • 如果无核(选择线性核),即给出线性分类器,适用于n大,m小的情况
    • 选择非线性核(如高斯核),适用于n小,m大的情况

下面是需要注意的地方:

  • 在使用核函数之前要对特征量进行规范化
  • 并不是所有的函数是有效的核函数,它们必须满足Mercer定理。
  • 如果想要通过训练得到参数C或者核函数的参数,应该是在训练集和交叉检验集上进行,,参见6.3节

8.5.1 Multi-class Classification

8.5.2 Logistic Regression vs. SVMs

参考:《机器学习》 周志华

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏技术与生活

机器学习之线性回归(1)

在开始理解回归分析之前,先有个二手房房价的例子,假设这里的房价只和面积,居室情况两个因素有关,那么我们就有下列的数据形式 面积 居室 房价[万] 80 2 10...

773
来自专栏老秦求学

深度学习算法优化背景知识---指数加权平均

943
来自专栏红色石头的机器学习之路

Coursera吴恩达《卷积神经网络》课程笔记(1)-- 卷积神经网络基础

《Convolutional Neural Networks》是Andrw Ng深度学习专项课程中的第四门课。这门课主要介绍卷积神经网络(CNN)的基本概念、...

3810
来自专栏大数据挖掘DT机器学习

机器学习中,正则化是怎么回事?

在机器学习中最大的危险就是过拟合,为了解决过拟合问题,通常有两种办法,第一是减少样本的特征(即维度),第二就是我们这里要说的“正则化”(又称为“惩罚”,pen...

2696
来自专栏智能算法

到底该如何选择损失函数?

机器学习中的所有算法都依赖于最小化或最大化某一个函数,我们称之为“目标函数”。最小化的这组函数被称为“损失函数”。损失函数是衡量预测模型预测期望结果表现的指标。...

1085
来自专栏UAI人工智能

轻松读论文——层规范化技术 Layer Normalisation

1523
来自专栏AI科技大本营的专栏

如何选择合适的损失函数,请看......

【AI科技大本营导读】机器学习中的所有算法都依赖于最小化或最大化某一个函数,我们称之为“目标函数”。最小化的这组函数被称为“损失函数”。损失函数是衡量预测模型预...

962
来自专栏人工智能

Coursera吴恩达《卷积神经网络》课程笔记(1)-卷积神经网络基础

推荐阅读时间:8min~15min 主要内容:卷积神经网络 《Convolutional Neural Networks》是Andrw Ng深度学习专项课程中的...

1859
来自专栏人工智能LeadAI

边缘检测论文笔记

摘要:这篇论文提出了一种基于FCNN和深度监督网络的新的边缘检测算法HED,它解决了两个重要的问题,1)整体图片的训练和预测,2)多尺度多层级的特征学习。HED...

942
来自专栏人工智能头条

如何选择合适的损失函数,请看......

951

扫描关注云+社区