开发 | 谷歌开源物体检测系统 API (附代码下载地址)

AI科技评论按:6月15号,谷歌在其“谷歌开源”博客(Google Open Source )中发表一篇名为《Supercharge your Computer Vision models with the TensorFlow Object Detection API》的文章,文中指出虽然谷歌的物体检测,图像识别机器学习系统很先进,但仍面临着很多挑战,比如如何提高识别精度。为此,谷歌将其物体检测系统代码开源,希望更多爱好者参与进来,共同推动研究领域的发展。AI科技评论对原文做了不改动愿意的整理编译:

在谷歌,有为计算机视觉开发的最灵活,最先进的机器学习(ML)系统,不仅可以用来改进产品和服务,还可以促进研究领域的进步。不过,在单个图像中创建精确的ML模型使其能够定位和识别多个对象仍然是该领域的一个核心挑战,谷歌投入了大量的时间训练和试验这些系统。

图中为其中的一个模型对图片中对象的识别检测效果

去年十月,谷歌内部的物体检测系统已达到了最先进水平,并在COCO检测挑战赛中排名第一。此后,该系统为大量研究期刊提供了结果。在一些谷歌产品中也已投入使用,如NestCam。在Street View中,街道名称,门牌号的检测,和在Image Search中都运用了相似的理念思想。

今天很高兴可以通过TensorFlow Object Detection API将代码开源给更大的研究社区。这个代码库是建立在TensorFlow上端的开源框架,使其构建,训练,展开物体检测模型变得容易。设计这一系统目的是为支持当前最佳的模型,同时允许快速探索和研究。第一个版本包含:

一个可训练的检测模型的集合,包括:

  • 带有MobileNets的SSD(Single Shot Multibox Detector)
  • 带有Inception V2的SSD
  • 带有Resnet 101的R-FCN(Region-based Fully Convolutional Networks)
  • 带有Resnet 101的 Faster RCNN
  • 带有Inception Resnet v2的Faster RCNN

上述每一个模型的冻结权重(在COCO的数据集上训练)可被运用进行推理。

一个Jupyter notebook 可通过我们的模型之一进行开箱推理

借助谷歌云实现便捷的本地训练脚本以及分布式训练和评估管道

SSD模型使用了轻量化的MobileNet,因此它可以轻而易举地实时在移动设备运行。在赢得COCO挑战赛中,谷歌使用了Fast RCNN模型,它需要更多的计算资源,同时结果也更为准确。

更多细节,请参看谷歌发表在CVPR 2017(https://arxiv.org/abs/1611.10012)的论文。

准备好开始了吗?

这些代码在计算机视觉应用中非常有用。谷歌希望这次开源能满足一部分人所需。也同时也欢迎更多能为代码库做贡献的人参与进来。现在,就可以下载代码,使用Jupyter notebook对图片中的物体进行识别。也可以使用Cloud ML训练自己的识别器了。

代码下载地址:https://github.com/tensorflow/models/tree/master/object_detection

Jupyter notebook:https://github.com/tensorflow/models/blob/master/object_detection/object_detection_tutorial.ipynb

Cloud ML:https://cloud.google.com/blog/big-data/2017/06/training-an-object-detector-using-cloud-machine-learning-engine

via Google; AI科技评论整理编译

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2017-06-16

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏智能算法

2017年关于深度学习的十大预测

Carlos E. Perez对深度学习的2017年十大预测,让我们不妨看一看。有兴趣的话,可以在一年之后回顾这篇文章,看看这十大预测有多少准确命中:) ? 1...

4056
来自专栏ATYUN订阅号

Salesforce开源用于结构化数据的机器学习库TransmogrifAI

机器学习模型可以识别数百,数千甚至数百万数据点之间的关系,但很难进行建构。数据科学家花费数周和数月不仅预处理要训练模型的数据,而且从该数据中提取有用的特征(即数...

814
来自专栏人工智能头条

AMiner背后的技术细节与挑战

1186
来自专栏吉浦迅科技

OpenACC帮助天体物理研究人员洞悉暗能量

项目概览 马克西米兰•卡茨和亚当•雅各布斯是美国石溪大学物理与天文 学系的博士研究生,他们力图通过研究恒星爆炸的成因来探察 难于捉摸的暗能量。卡茨研究两个恒星残...

3108
来自专栏ATYUN订阅号

光子量子处理器Xanadu团队:探索量子神经网络

1594
来自专栏人工智能头条

深度学习成长的烦恼

811
来自专栏CDA数据分析师

数据挖掘:推荐系统综述以及美团推荐系统介绍

其实推荐系统前面已经讲过不少,那时候主要是放在机器学习上讲的,既然这次要系统撸一遍数据挖掘,就把推荐系统单独拿出来说一说。相信如果做过推荐系统的人,都知道是什么...

5478
来自专栏机器人网

开发者总结: 8 种最好的 AI 机器学习开源项目

随着 AI 技术快速发展,各种理论与实践层出不穷,它正在迅速改变我们生活中几乎每一个领域,从我们如何交流到用于交通的手段。作为开发者或者学习者,在开始构建机器学...

952
来自专栏大数据文摘

Marcus十大理由质疑深度学习?LeCun说大部分错了

1206
来自专栏目标检测和深度学习

业界 | 如何评估深度学习的性能?英伟达提出7大挑战

1304

扫码关注云+社区