开发 | 谷歌开源物体检测系统 API (附代码下载地址)

AI科技评论按:6月15号,谷歌在其“谷歌开源”博客(Google Open Source )中发表一篇名为《Supercharge your Computer Vision models with the TensorFlow Object Detection API》的文章,文中指出虽然谷歌的物体检测,图像识别机器学习系统很先进,但仍面临着很多挑战,比如如何提高识别精度。为此,谷歌将其物体检测系统代码开源,希望更多爱好者参与进来,共同推动研究领域的发展。AI科技评论对原文做了不改动愿意的整理编译:

在谷歌,有为计算机视觉开发的最灵活,最先进的机器学习(ML)系统,不仅可以用来改进产品和服务,还可以促进研究领域的进步。不过,在单个图像中创建精确的ML模型使其能够定位和识别多个对象仍然是该领域的一个核心挑战,谷歌投入了大量的时间训练和试验这些系统。

图中为其中的一个模型对图片中对象的识别检测效果

去年十月,谷歌内部的物体检测系统已达到了最先进水平,并在COCO检测挑战赛中排名第一。此后,该系统为大量研究期刊提供了结果。在一些谷歌产品中也已投入使用,如NestCam。在Street View中,街道名称,门牌号的检测,和在Image Search中都运用了相似的理念思想。

今天很高兴可以通过TensorFlow Object Detection API将代码开源给更大的研究社区。这个代码库是建立在TensorFlow上端的开源框架,使其构建,训练,展开物体检测模型变得容易。设计这一系统目的是为支持当前最佳的模型,同时允许快速探索和研究。第一个版本包含:

一个可训练的检测模型的集合,包括:

  • 带有MobileNets的SSD(Single Shot Multibox Detector)
  • 带有Inception V2的SSD
  • 带有Resnet 101的R-FCN(Region-based Fully Convolutional Networks)
  • 带有Resnet 101的 Faster RCNN
  • 带有Inception Resnet v2的Faster RCNN

上述每一个模型的冻结权重(在COCO的数据集上训练)可被运用进行推理。

一个Jupyter notebook 可通过我们的模型之一进行开箱推理

借助谷歌云实现便捷的本地训练脚本以及分布式训练和评估管道

SSD模型使用了轻量化的MobileNet,因此它可以轻而易举地实时在移动设备运行。在赢得COCO挑战赛中,谷歌使用了Fast RCNN模型,它需要更多的计算资源,同时结果也更为准确。

更多细节,请参看谷歌发表在CVPR 2017(https://arxiv.org/abs/1611.10012)的论文。

准备好开始了吗?

这些代码在计算机视觉应用中非常有用。谷歌希望这次开源能满足一部分人所需。也同时也欢迎更多能为代码库做贡献的人参与进来。现在,就可以下载代码,使用Jupyter notebook对图片中的物体进行识别。也可以使用Cloud ML训练自己的识别器了。

代码下载地址:https://github.com/tensorflow/models/tree/master/object_detection

Jupyter notebook:https://github.com/tensorflow/models/blob/master/object_detection/object_detection_tutorial.ipynb

Cloud ML:https://cloud.google.com/blog/big-data/2017/06/training-an-object-detector-using-cloud-machine-learning-engine

via Google; AI科技评论整理编译

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2017-06-16

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏AI研习社

CV 届的金鸡百花奖:盘点我心中的 CVPR 2018 创意 TOP10

2018 计算机视觉与模式识别会议 (CVPR) 上周在美国盐湖城举行,它是世界计算机视觉领域的顶级会议。今年,CVPR 收到了主要会议论文投稿 3300 份,...

973
来自专栏新智元

【干货】微软童欣:黑科技!机器学习打造全新3D图形技术

【新智元导读】微软亚洲研究院AI大咖童欣在中国科技大学进行题为《数据驱动方法在图形学中的应用》的前沿演讲,解释了如何通过数据驱动的方法来处理图形学问题,以及最新...

3255
来自专栏AI科技评论

Andrej Karpathy发文谈神经网络:这不仅仅是分类器,这是一种新的软件开发思想

AI科技评论按:有越来越多的传统编程语言(C、C++、Java)等程序员开始学习机器学习/深度学习,而对机器学习/深度学习的研究人员来说,编程也是必备技巧。那么...

3125
来自专栏机器之心

CVPR 2018 | 商汤科技提出GeoNet:用无监督学习感知3D场景几何

选自arXiv 作者:Zhichao Yin等 机器之心编译 参与:Panda 有效的无监督学习方法能缓解对有标注数据的需求,无监督学习技术与视觉感知领域的结合...

2593
来自专栏目标检测和深度学习

深度学习简述

作为人工智能领域里最热门的概念,深度学习会在未来对我们的生活产生显著的影响,或许现在已经是了,从 AlphaGo 到 iPhone X 上的人脸识别(FaceI...

2736
来自专栏人工智能头条

《纽约时报》如何打造新一代推荐系统

1092
来自专栏AI研习社

谷歌开源物体检测系统 API (附代码下载地址)

AI 研习社按:近日,谷歌在其“谷歌开源”博客(Google Open Source )中发表一篇名为《Supercharge your Computer Vi...

3183
来自专栏钱塘大数据

【思维导图】机器学习基础之「统计篇」

本文用一系列「思维导图」由浅入深的总结了「统计学」领域的基础知识,是对之前系列文章做的一次完整的梳理,也是我至今为止所有与统计有关的学习笔记。众所周知,「统计学...

33813
来自专栏华章科技

看《纽约时报》如何用数据算法打造新一代推荐系统!

通过精炼读者获取这些内容的途径,即在移动应用和网站上基于读者喜好调整文章布局,能够帮助读者找到与他们相关的内容,比如在正确的时间推送读者感兴趣的内容、重大事件的...

692
来自专栏人工智能

2017年深度学习领域阅读量最高的11篇文章

来源:Analytics Vidhya 智能观 编译 【智能观】本文是国外知名技术网站Analytics Vidhya总结的11篇深度学习领域最佳文章,如果你还...

2038

扫描关注云+社区