开发 | 谷歌开源计算机视觉模型MobileNets:专为不同级别移动设备优化

AI 科技评论消息,谷歌刚刚对外发布了开源计算机视觉模型MobileNets。MobileNets是一系列为移动和嵌入式设备设计的计算机视觉模型,它可以利用设备有限的资源高效运行,并提供尽可能高的准确率。

AI 科技评论从谷歌开源博客了解到了更多信息,介绍如下。

在深度学习的支持下,计算机视觉近几年得到了突飞猛进的发展,神经网络的使用不断把识别视觉技术推上新的高度。虽然目前包括识别物体、地标、logo、文字在内的许许多多计算机视觉技术都是通过云视觉API进行计算然后把结果显示在互联网设备上的,谷歌的研究人员认为,移动设备持续高速增长的计算能力已经可以让这些技术随时随地、不受网络限制地给用户提供服务。

不过,在手持设备和嵌入式应用上做视觉识别目前还有不少困难,在这样资源及其有限的环境下,视觉识别模型需要高效利用计算能力、能源和空间,高速运行并且保证准确率。

为了尝试解决这些问题,谷歌于美国时间6月14日发布了MobileNets。MobileNets是一系列为移动设备设计、用在TensorFlow中的计算机视觉模型,它们的设计目标是在手持或者嵌入式设备有限的资源下高效地运行,提供尽可能高的准确率。MobileNets中的一系列模型都是小型、低延迟、低耗能的模型,它们为多种不同使用场景下的有限资源做了针对性的参数优化。开发者可以像用Inception这样的大型热门模型一样地用MobileNets中的模型进一步开发分类、识别、嵌入和细分功能。

基于MobileNets在移动设备上进行检测、细粒度分类、属性和地标检测应用的例子

这个MobileNets版本包含了这些模型在TensorFlow中的定义(具体使用的是TF-Slim),也包含16个已经训练好的ImageNet分类器,它们分别适用于不同大小的移动设备或者移动应用中。这些模型配合TensorFlow Mobile可以在移动设备上高效地运行。

谷歌建议根据自己的延迟和项目大小需求选取适合的模型。网络模型在内存和磁盘中所占的空间大小和网络中参数的数量成正比。用MACs值(Multiply-Accumulates,累积乘法量,用来衡量乘法、加法融合计算的数量)可以估计网络的延迟和能源消耗。Top-1和Top-5准确率是通过ILSVRC数据库测试得出的。

现在MobileNets已经共享到开源社区,谷歌的研发人员们对此表示很开心。

MobileNets如何上手,请见 TensorFlow-Slim Image Classification Library

( https://github.com/tensorflow/models/blob/master/slim/README.md )

如何在移动设备运行机器学习模型,请见 TensorFlow Mobile ( https://www.tensorflow.org/mobile/ )

谷歌的论文里有更多技术细节 MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. ( https://arxiv.org/abs/1704.04861 )

后续报道,请继续关注 AI 科技评论

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2017-06-15

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏AI科技评论

解惑 | Yann LeCun答深度学习现存的各类疑问,你是否想知道答案?

联合编译:陈圳,高斐,章敏 深度学习的局限性表现在哪些方面? 深度学习的一些“典型”形式包括各种前馈模块(卷积网络)和递归网络(有时以记忆单元,如LSTM或M...

3307
来自专栏灯塔大数据

观点|12位专家展望未来5年深度学习发展趋势

? 2015年已然过去,2016刚刚开始,回头将目光集中于去年的成就上,以及对将来科学趋势的预测。去年最令人瞩目的一个领域就是深度学习,它是机器学习中越来越流...

34014
来自专栏大数据文摘

12位专家,展望未来5年深度学习发展趋势

1998
来自专栏人工智能头条

专家展望未来5年深度学习发展趋势

1744
来自专栏企鹅号快讯

机器学习和深度学习概念入门(上)

目 录 1人工智能、机器学习、深度学习三者关系 2什么是人工智能 3什么是机器学习 4机器学习之监督学习 5机器学习之非监督学习 6机器学习之半监督学习 7机...

1958
来自专栏PPV课数据科学社区

深度 | 地平线罗恒:应用深度学习的门槛是在降低吗?

导读: 地平线机器人资深算法研究员罗恒参加了钛坦白第33期,与百度资深工程师、Paddle API重构设计负责人于洋及第四范式联合创始人、首席研究科学家陈雨强一...

2966
来自专栏AI派

给初学者的深度学习入门指南

这个阶段有吴恩达、李飞飞、GeoffreyHinton、Ian Goodfellow等传奇人物的卓越贡献

965
来自专栏腾讯音视频实验室

Interspeech 2017:腾讯音视频实验室王燕南博士论文入选,并获邀做口头报告

2017年8月20日,语音通信领域国际顶级学术会议Interspeech 2017在瑞典斯德哥尔摩召开。 Interspeech是由国际语音通信协会ISCA(...

3806
来自专栏量子位

互联网产品经理需要懂哪些机器学习知识?

安妮 编译自 HackerNoon 量子位 出品 | 公众号 QbitAI 现在,很多产品经理、技术经理和设计师都开始研究机器学习。但机器学习对产品的设计、支持...

3295
来自专栏腾讯大讲堂的专栏

深度学习重构视觉计算

视频AI不仅需要建模图像的空间域信息,还需要建模视频帧之间的时间域信息。

5605

扫码关注云+社区