美情报机构支持类脑计算研究

据美国情报高级研究计划局(IARPA)网站2016年1月4日消息,该机构正在征寻针对罕见事件的建模与预测方法。

为了了解研发新一代计算机的潜在机遇和挑战,IARPA正在向以下两个领域的专家们征求方案:(1)拥有类脑计算机系统设计与研制经验的计算机科学家;(2)就神经计算原理对新一代计算机研发的实际用途持有可靠观点的神经学家。

IARPA要求提交方案的神经学家和计算机科学家能够清晰简明地回答以下一个或多个问题:

问题1:基于尖峰脉冲的表征技术

大脑运行时采用的代码基于大量神经元内罕见的尖峰脉冲。在许多系统中,这些代码比较杂乱或不精确,表明近似计算可能对脑功能有作用。

待神经学家解答的问题:我们目前对“大脑如何利用基于尖峰脉冲的表征技术、稀疏编码技术和/或近似计算技术”的了解对于研发下一代计算机有何实际作用?需要首先填补哪些认知缺口或克服哪些困难?有无关于如何在实践中使用基于尖峰脉冲的表征技术、稀疏编码技术和/或近似计算技术的模拟或演示?

待计算机科学家解答的问题:关于“基于尖峰脉冲的表征技术、稀疏编码技术和/或近似计算技术在数字或模拟计算系统中的应用”方面的研究现状如何?目前有无硬件系统采用的是与尖峰技术类似的表征技术?如有,请说明应用领域和用例以及系统的性能特征。

问题2:异步计算

大脑不使用全局时钟信号一次性同步更新所有计算元素,而默认的神经元功能是独立的,仅能暂时性协调它们的活动。

待神经学家解答的问题:我们目前对于“大脑如何利用异步计算和/或瞬态协调技术”的了解对于研发下一代计算机有何实际作用?需要首先填补哪些认知缺口或克服哪些困难?有无关于如何在实践中使用异步计算和/或瞬态协调技术的模拟或演示?

待计算机科学家解答的问题:关于“异步计算和/或瞬态协调技术在数字或模拟计算系统中的应用”方面的研究现状如何?目前有无硬件系统采用异步计算和/或瞬态协调技术?如有,请说明应用领域和用例以及系统的性能特征。

问题3:学习

大脑采用的可塑性机制能够在多时间尺度下连续运行,支持在线学习。值得注意的是,在持续的可塑性过程中,大脑能够保持稳定运行状态。

待神经学家解答的问题:

我们目前对于“大脑如何利用短/长期在线学习技术”的了解对于研发下一代计算机有何实际作用?需要首先填补哪些认知缺口或克服哪些困难?有无关于如何在实践中使用短/长期在线学习技术的模拟或演示?

待计算机科学家解答的问题:关于“短/长期在线学习技术在数字或模拟计算系统中的应用”方面的研究现状如何?目前有无硬件系统采用短/长期在线学习技术?如有,请说明应用领域和用例以及系统的性能特征。

问题4:本地存储器存储与计算功能集成技术

大脑并未严格隔离存储器和计算单元,如传统的冯诺依曼架构,而一个神经元的突触输入便可起到储存记忆与计算支持的双重作用。

待神经学家解答的问题:我们目前对于“大脑如何利用本地存储器存储与计算功能集成技术”的了解对于研发下一代计算机有何实际作用?需要首先填补哪些认知缺口或克服哪些困难?有无关于如何在实践中使用本地存储器存储与计算功能集成技术的模拟或演示?

待计算机科学家解答的问题:关于“本地存储器存储与计算功能集成技术在数字或模拟计算系统中的应用”方面的研究现状如何?目前有无硬件系统采用本地存储器存储与计算功能集成技术?如有,请说明应用领域和用例以及系统的性能特征。

原文发布于微信公众号 - 人工智能快报(AI_News)

原文发表时间:2016-01-25

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

扫码关注云+社区