算法之旅 | 快速排序法

HTML5学堂-码匠:前几期“算法之旅”跟大家分享了冒泡排序法和选择排序法,它们都属于时间复杂度为O(n^2)的“慢”排序。今天跟大家分享多种排序算法里使用较广泛,速度快的排序算法 —— 快速排序法 [ 平均时间复杂度为O (n logn) ]。

Tips 1:关于“算法”及“排序”的基础知识,在此前“选择排序法”中已详细讲解,可点击文后的相关文章链接查看,在此不再赘述。

Tips 2:如果无特殊说明,本文的快速排序是从小到大的排序。

快速排序法的原理

快速排序是一种划分交换排序,它采用分治的策略,通常称其为分治法。

分治法

基本思想:将原问题分解为若干个规模更小但结构与原问题相似的子问题。递归地解决这些子问题,然后将这些子问题的结果组合成原问题的结果。

基本原理

从序列中任选一个数作为“基准”;

所有小于“基准”的数,都挪到“基准”的左边;所有大于等于“基准”的数,都挪到“基准”的右边;

在这次移动结束之后,该“基准”就处于两个序列的中间位置,不再参与后续的排序;

针对“基准”左边和右边的两个子序列,不断重复上述步骤,直到所有子序列只剩下一个数为止。

原理图解

现有一个序列为 [8, 4, 7, 2, 0, 3, 1],如下演示快速排序法如何对其进行排序。

实现快速排序的步骤分解

选择“基准”,并将其从原始数组分离

先获取基准的索引值,再使用splice数组方法取出基准值。

Tips:该实例中, 基准的索引值 = parseInt(序列长度 / 2)

Tips:splice方法会改变原始数组。例如,arr = [1, 2, 3]; 基准索引值为1,基准值为2,原始数组变为arr = [1, 3];

遍历序列,拆分序列

与“基准”比较大小,并拆分为两个子序列

小于“基准”的数存储于leftArr数组当中,大于等于“基准”的数存储于rightArr数组当中

Tips:当然,也可以将 小于等于“基准”的数存于leftArr,大于“基准”的数存于rightArr

由于要遍历序列,将每一个数与“基准”进行大小比较,所以,需要借助for语句来实现

递归调用,遍历子序列并组合子序列的结果

定义一个函数,形参用于接收数组

function quickSort(arr) { };

实现递归调用遍历子序列,用concat数组方法组合子序列的结果

判断子序列的长度

递归调用的过程中,子序列的长度等于1时,则停止递归调用,返回当前数组。

快速排序法完整代码

快速排序法的效率

时间复杂度

最坏情况:每一次选取的“基准”都是序列中最小的数/最大的数,这种情况与冒泡排序法类似(每一次只能确定一个数[基准数]的顺序),时间复杂度为O(n^2)

最好情况:每一次选取的“基准”都是序列中最中间的一个数(是中位数,而不是位置上的中间),那么每次都把当前序列划分成了长度相等的两个子序列。这时候,第一次就有n/2、n/2两个子序列,第二次就有n/4、n/4、n/4、n/4四个子序列,依此类推,n个数一共需要logn次才能排序完成(2^x=n,x=logn),然后每次都是n的复杂度,时间复杂度为O(n logn)

空间复杂度

最坏情况:需要进行n‐1 次递归调用,其空间复杂度为 O(n)

最好情况:需要logn次递归调用,其空间复杂度为O(logn)

算法的稳定性

快速排序是一种不稳定排序算法

例如:现有序列为[1, 0, 1, 3],“基准”数字选择为第二个1

在第一轮比较之后,变成了[0, 1, 1, 3],左序列为[0],右序列为[1, 3](右序列的1是此前的第一个1)

不难发现,原序列的两个1的先后顺序被破坏了,改变了先后顺序,自然就是“不稳定”的排序算法了

关于O

在此前的“冒泡排序法”一文当中,我们详细讲解过O是什么,在此就不多说了,直接上图吧

生活艰辛,代码不易,但,不要忘记微笑!

版权声明:该图来自“【美】莉兹·克里莫 (author)”的书籍《你今天真好看》

原文发布于微信公众号 - HTML5学堂(h5course-com)

原文发表时间:2017-09-20

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

2 条评论
登录 后参与评论

相关文章

来自专栏机器学习原理

我的机器学习numpy篇何为ndarray?ndarry创建生成正态分布ndarry属性修改形状ndarry运算ndarry切片矩阵转置聚合函数

前言: numpy是以矩阵为基础的数学计算模块,其基础为多维数组为ndarray 官方文档:(https://docs.scipy.org/doc/nump...

3558
来自专栏算法channel

玩转Pandas,让数据处理更easy系列2

上一篇总结了Pandas中最重要的两个数据结构:Series和DataFrame,前者相当于更加强大的一维数组,是数组和字典的组合,因为既可以按照位置,也能通过...

763
来自专栏灯塔大数据

每周学点大数据 | No.20序列有序的判定

No.19期 序列有序的判定0 数组的判 Mr. 王:这里我们再讲一个亚线性时间的判定问题——数组有序的判定问题。你来说一下问题定义,并想一想这个问题...

2665
来自专栏数据结构与算法

13:图像模糊处理

13:图像模糊处理 总时间限制: 1000ms 内存限制: 65536kB描述 给定n行m列的图像各像素点的灰度值,要求用如下方法对其进行模糊化处理: 1....

3305
来自专栏钟绍威的专栏

矩阵的基本知识构造重复矩阵的方法——repmat(xxx,xxx,xxx)构造器的构造方法单位数组的构造方法指定公差的等差数列指定项数的等差数列指定项数的lg等差数列sub2ind()从矩阵索引==》

要开始学Matlab了,不然就完不成任务了 java中有一句话叫作:万物皆对象 在matlab我想到一句话:万物皆矩阵 矩阵就是Java中的数组 ...

19610
来自专栏数据小魔方

作图前的数据预处理

今天给大家讲解作图前原数据的排序整理技巧! 前一篇推送讲到了条形图数据系列顺序反转问题 原数据系列的排序只是给大家提示要用智能表格排序 今天交给大家一种更简洁...

2527
来自专栏Python小屋

Pandas创建DataFrame对象的几种常用方法

DataFrame是pandas常用的数据类型之一,表示带标签的可变二维表格。本文介绍如何创建DataFrame对象,后面会陆续介绍DataFrame对象的用法...

3358
来自专栏王肖的UT

GLSL-运算符和表达式

1483
来自专栏mathor

科学计算库Numpy

 genfromtxt函数里穿了三个参数,分别是 要打开的文档名称,分隔符,以什么类型存储  打印结果:

654
来自专栏zhisheng

Java常用排序算法/程序员必须掌握的8大排序算法(下)

昨天发表的java常用排序算法/程序员必须掌握的8大算法(上),没看的可以点上面这个链接↑↑↑↑,(概念+实例+代码+排序舞蹈视频)更好的帮助你理解。 java...

4189

扫描关注云+社区