干货 | 如何用TensorFlow生成令人惊艳的分形图案

今天来介绍一个小项目:在TensorFlow中生成分形图案。分形本身只是一个数学概念,与机器学习并无太大关系,但是通过分形的生成,我们可以了解怎么在TensorFlow中进行数学计算,以及如何进行基本的流程控制,是学习TensorFlow的一个非常好的练手项目。

在开始之前,需要说明的是,TensorFlow官方也提供了一个生成分形图案的教程(地址: www.tensorflow.org/tutorials/mandelbrot ),然而官方教程中生成的图像实在是太丑了,而且只能生成一种图案,我对官方的代码做了一些改进,并且加入了多种类型的分形,此外,不仅可以生成图像,还可以制作gif动画,代码已经放到了Github上:https://github.com/hzy46/tensorflow-fractal-playground,主要的程序只有50行,欢迎大家参考。

Mandelbrot集合

Mandelbrot集合是分形中最经典的一个例子。考虑迭代公式 z_{n+1}=z_n^2+c(z和c都是复数)。当 z_0为0时,得到的值可以组成一个数列,依次为 c, c_^2+c ,(c^2+c)^2+c......。当该数列发散到无穷时,对应的点就属于Mandelbrot集合。

如 c=0时,显然数列永远是0,并不发散,因此0不属于Mandelbrot集合。

又如 c=3i时,对应的数列为 3i,-9+3i,63-51i,1431-6477i......,数字越来越庞大,因此3i就属于Mandelbrot集合。

在二维平面上,将所有不属于Mandelbrot集合的点标记为黑色,将所有属于Mandelbrot集合的点按照其发散速度赋予不同的颜色,就可以得到Mandelbrot的经典图像:

上面这张图完全是使用TensorFlow进行计算的,类似的图大家应该在网上也见过好多了,在TensorFlow中,我们定义下面的计算步骤:

xs = tf.constant(Z.astype(np.complex64)) zs = tf.Variable(xs) ns = tf.Variable(tf.zeros_like(xs, tf.float32)) with tf.Session(): tf.global_variables_initializer().run() zs_ = tf.where(tf.abs(zs) < R, zs**2 + xs, zs) not_diverged = tf.abs(zs_) < R step = tf.group( zs.assign(zs_), ns.assign_add(tf.cast(not_diverged, tf.float32)) for i in range(ITER_NUM): step.run() final_step = ns.eval() final_z = zs_.eval()

zs就对应我们之前迭代公式的z,而xs就对应迭代公式中的c。为了方便起见,只要计算时数值的绝对值大于一个事先指定的值R,就认为其发散。每次计算使用tf.where只对还未发散的值进行计算。结合ns和zs_就可以计算颜色,得到经典的Mandelbrot图像。

Julia集合

Julia集合和Mandelbrot集合差不多,但这次我们固定c,转而计算发散的z的值。即c是固定的常数(可以任取),数列变成 z,z^2+c,(z^2+c)^2+c......。如果该数列发散,对应的z就属于Julia集合。对此,我们只要在原来的程序中修改两行内容,就可以生成Julia集合:

xs = tf.constant(np.full(shape=Z.shape, fill_value=c, dtype=Z.dtype)) zs = tf.Variable(Z)

我们在fill_value=c处指定了Julia集合中的c值,只要使用不同的c值,就可以生成完全不同的Julia集合!

默认:c=-0.835-0.2321i:

将c值变为 c=-0.8i ,并调整颜色(调整方法参考Github页面的说明):

选用 c=0285+0.01i,图案又变得完全不同:

生成Julia集合的动画

在Julia集合中,每次都对c的值进行微小的改变,并将依次生成图片制作为gif,就可以生成如下所示的动画,对应的代码为julia_gif.py:

这里由于上传gif有大小限制的关系,只展示了一个小尺寸的动画图像。程序中提供了一个width参数,可以修改它以生成更大尺寸,质量更高的动画图像。

探索Mandelbrot集合

(注意:下面的图片可能对密集恐惧症患者不太友好。。。因此慎重翻页。。)

在前面生成的Mandelbrot集合中,我们可以将图像放大,选取某些区域进行生成,就可以得到格式各样造型迥异的分形图案,对应的程序为mandelbrot_area.py。

在Mandelbrot集合中,有很多地方图案比较奇特,如下图中的9个位置。

其中编号为2的地方被称为“Elephant Valley”,因为此处的图案与大象很像,直接运行mandelbrot_area.py就可以得到该区域的图像:

编号为3的地方被称为“Triple Spiral Valley”(三重螺旋),在mandelbrot_area.py修改一下坐标位置为(ratio调整的是颜色):

start_x = -0.090 # x range end_x = -0.086 start_y = 0.654 # y range end_y = 0.657 width = 1000 ratio1, ratio2, ratio3 = 0.2, 0.6, 0.6

就可以得到该处的图案:

最后编号为1的地方被称为“Seahorse Valley”(海马山谷),对应的坐标为:

start_x = -0.750 # x range end_x = -0.747 start_y = 0.099 # y range end_y = 0.102 width = 1000 ratio1, ratio2, ratio3 = 0.1, 0.1, 0.3

图像如下,确实和海马有一点神似:

生成更多的图案

项目提供了两个jupyter notebook:Mandelbrot.ipynb和Julia.ipynb可以对Mandelbrot集合、Julia集合做更方便的探索。其中,Mandelbrot集的更多坐标位置可以参考Quick Guide to the Mandelbrot Set(http://www.nahee.com/Derbyshire/manguide.html),Julia集中更多有趣的c值可以参考Julia set - Wikipedia(https://en.wikipedia.org/wiki/Julia_set#Quadratic_polynomials)。网上类似的资源还有很多。

最后再安利一下项目地址:https://github.com/hzy46/tensorflow-fractal-playground。如果代码有什么问题可以直接发在评论里或者在Github上提出issue:)

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2017-09-11

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏一个会写诗的程序员的博客

java.base.jmod

/Library/Java/JavaVirtualMachines/jdk-9.jdk/Contents/Home/jmods$ jmod list java....

1112
来自专栏我和未来有约会

简练的视图模型 ViewModel

patterns & practices Developer Center 发布了 Unity Application Block 1.2 for Silver...

2159
来自专栏一个会写诗的程序员的博客

java.sql.SQLException: connection holder is null

java.sql.SQLException: connection holder is null

1341
来自专栏搞前端的李蚊子

Html5模拟通讯录人员排序(sen.js)

// JavaScript Document  var PY_Json_Str = ""; var PY_Str_1 = ""; var PY_Str_...

5866
来自专栏MelonTeam专栏

Bitmap 源码阅读笔记

导语: Android 系统上的图片的处理,跟Bitmap 这个类脱不了关系,我们有必要去深入阅读里面的源码,以便在工作中能更好的处理Bitmap相关的问题...

2458
来自专栏码匠的流水账

spring security reactive获取security context

本文主要研究下reactive模式下的spring security context的获取。

1742
来自专栏跟着阿笨一起玩NET

c# 使用timer定时器操作,上次定时到了以后,下次还未执行完怎么处理

------解决方案-------------------------------------------------------- 开始的时候,禁用定时器,你...

2571
来自专栏Golang语言社区

Knapsack problem algorithms for my real-life carry-on knapsack

I'm a nomad and live out of one carry-on bag. This means that the total weight o...

1132
来自专栏余生开发

echarts太阳分布图-饼图来回穿梭

var dom = document.getElementById("container");

1142
来自专栏linux驱动个人学习

高通Audio中ASOC的machine驱动

ASoC被分为Machine、Platform和Codec三大部分,其中的Machine驱动负责Platform和Codec之间的耦合以及部分和设备或板子特定的...

9664

扫码关注云+社区