动态 | 谷歌发布TensorFlow Lattice:得益于先验知识,提升模型泛化能力

AI科技评论消息:近日,谷歌科学家发布TensorFlow Lattice,这是一套预建的TensorFlow Estimators,易于使用,它相当于是TensorFlow运算符,用来构建点阵模型(lattice model)。点阵是多维插值查找表(look-up table),与几何教材背面近似于正弦函数的查找表类似。

AI科技评论编译整理如下:

我们利用查找表的结构(它可以通过多个输入进行键控),来估计比较随意及灵活的关系,并满足于指定的单调关系,以便更好地泛化。也就是说,训练查找表值使得训练样例的损失最小化。另外,查找表中的相邻值被约束为在输入空间的给定方向上增长,因此模型的输出值也是在这些方向上增长。重要的是,因为是在查找表值之间进行插入,所以点阵模型很平滑,预测也是有界的,这有助于避免测试阶段出现有较大偏差的杂散预测。

点阵模型的作用

设想一下,你正在设计一个向用户推荐附近咖啡店的系统,你需要让模型学习:“如果两家咖啡店是一样的,那就选择更近一点的。”

下图中我们展示了一个灵活的模型(粉色曲线),它可以精确地与来自东京用户的训练数据(紫色圆点)相匹配,在用户附近有很多咖啡店。

由于训练样例比较嘈杂,可以看到粉色曲线模型产生了过拟合,并且模型还忽略了总的趋势——越近的咖啡店越好。如果用这条粉色曲线模型排列来自德克萨斯州(蓝色)的测试样本,在德克萨斯州咖啡店的分布更加分散,你会发现模型的表现变得很奇怪,有时甚至会认为更远的咖啡店更好!

对比起来,运用东京相同的样本训练的点阵模型能被约束为满足单调关系,最终得到一个灵活的单调函数(绿色曲线)。这个函数能与东京的训练样例精准匹配,但是也能泛化到德克萨斯州的样例上,不会出现更远的咖啡店更好的情况。

一般说来,输入会有每个咖啡店的咖啡质量、价格等等。灵活模型很难捕捉到这种形式的整体关系,特别是在一些特征空间中,训练数据非常稀疏和杂乱。“如果其他所有输入占的权重一样,那么更近就更好。”能捕捉到先验知识(例如输入是怎么对预测值产生影响的)的机器学习模型在实际中取得的效果更好,更易于调试并更具有解释性。

预建 Estimators

我们提供一系列点阵模型架构作为TensorFlow Estimators。我们提供的最简单的estimator是校准线性模型(calibrated linear model),它能利用1-d点阵,学习到每个特征的最佳1-d转化,然后线性地将所有校准特征结合起来。如果训练数据集很小或没有复杂的非线性输入交互,模型将非常有效。

另外一个estimator是校准点阵模型(calibrated lattice model),这个模型能利用两层单一点阵模型非线性地将校准特征结合起来,能在数据集中表示复杂的非线性交互。如果有2-10个特征,那么校准点阵模型会是很好的选择,但对于10个或10个以上的特征,我们认为利用一组校准点阵将会得到最佳结果,这时候你能利用预建的一组架构来进行训练。比起随机森林,单调点阵集合(Monotonic lattice ensembles)能增加0.3% -- 0.5%的准确度。另外,比起之前顶尖的单调性学习模型,这些新的TensorFlow点阵estimator 能增加0.1% -- 0.4%的准确度。

动手建立模型

你或许想要用更深的点阵网络进行实验,或者利用部分单调函数(作为深度神经网络或其他TensorFlow架构的一部分)来进行研究。我们提供构件:TensorFlow校准运算符、点阵插入和单调性投影(monotonicity projections)。下图是一个9层深度点阵网络:

在TensorFlow Lattice中,除了模型的灵活选择以及标准的L1、L2正则化,我们还提供新的正则化矩阵:

  • 如上面描述的那样,在输入上进行单调性约束。
  • 在点阵上进行拉普拉斯正则化,以便让学习到的函数更平滑。
  • 对扭曲进行正则化(Torsion regularization),来抑止不必要的非线性特征交互。

大家可以在如下地址看到详细信息并开始进行实验:

GitHub地址:https://github.com/tensorflow/lattice

tutorials地址:https://github.com/tensorflow/lattice/blob/master/g3doc/tutorial/index.md

参考文献:

[1] Lattice Regression, Eric Garcia, Maya Gupta, Advances in Neural Information Processing Systems (NIPS), 2009

[2] Optimized Regression for Efficient Function Evaluation, Eric Garcia, Raman Arora, Maya R. Gupta, IEEE Transactions on Image Processing, 2012

[3] Monotonic Calibrated Interpolated Look-Up Tables, Maya Gupta, Andrew Cotter, Jan Pfeifer, Konstantin Voevodski, Kevin Canini, Alexander Mangylov, Wojciech Moczydlowski, Alexander van Esbroeck, Journal of Machine Learning Research (JMLR), 2016

[4] Fast and Flexible Monotonic Functions with Ensembles of Lattices, Mahdi Milani Fard, Kevin Canini, Andrew Cotter, Jan Pfeifer, Maya Gupta, Advances in Neural Information Processing Systems (NIPS), 2016

[5] Deep Lattice Networks and Partial Monotonic Functions, Seungil You, David Ding, Kevin Canini, Jan Pfeifer, Maya R. Gupta, Advances in Neural Information Processing Systems (NIPS), 2017

via:Google Research Blog

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2017-10-12

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏大数据挖掘DT机器学习

数据挖掘工程师笔试及答案

2013百度校园招聘数据挖掘工程师 一、简答题(30分) 1、简述数据库操作的步骤(10分) 步骤:建立数据库连接、打开数据库连接、建立数据库命令、运行数据库命...

3788
来自专栏人工智能头条

cuDNN 5对RNN模型的性能优化

2225
来自专栏企鹅号快讯

高精准预测—人工神经网络

我就在这里等你关注,不离不弃 ——A·May R-46T-56 ? 「序 言 」 前几天学习了R中的KNN近邻分类预测的做法,KNN近邻分析法可以说是最基础的、...

1866
来自专栏数据派THU

为何RNN能够在众多机器学习方法中脱颖而出?(附指南)

来源:机器人圈 作者:BaymaxZ 本文长度为5000字,建议阅读20分钟 本文介绍RNN的重要性和先进性,并详细阐释几种用于深度学习中的RNN模型。 近年来...

1855
来自专栏大数据文摘

主成分分析(PCA)在R 及 Python中的实战指南

2268
来自专栏AI2ML人工智能to机器学习

一个奇异值的江湖 -- 经典统计观

有江湖的地方就有奇异值, 有时候奇值(outlier)和异值(anomaly)会咬文嚼字的区分一下: outlier是合理的(explainable)小概率事件...

351
来自专栏云霄雨霁

算法设计策略----动态规划法

1180
来自专栏张耀琦的专栏

【机器学习入门系列05】分类、概率生成模型

本文通过将神奇宝贝数值化的过程介绍了分类模型、先验概率以及高斯分布的应用;最大似然估计的方法;推导后验概率等

6010
来自专栏IT派

一个Python自动提取内容摘要的实践

利用计算机将大量的文本进行处理,产生简洁、精炼内容的过程就是文本摘要,人们可通过阅读摘要来把握文本主要内容,这不仅大大节省时间,更提高阅读效率。但人工摘要耗时又...

1230
来自专栏机器学习ML

UdaCity-机器学习工程师-项目2:为CharityML寻找捐献者

在这个入门项目中,我们将探索部分泰坦尼克号旅客名单,来确定哪些特征可以最好地预测一个人是否会生还。

12211

扫描关注云+社区