开发 | Kaggle机器学习之模型融合(stacking)心得

此文道出了本人学习Stacking入门级应用的心路历程。

在学习过程中感谢@贝尔塔的模型融合方法(https://zhuanlan.zhihu.com/p/25836678),以及如何在 Kaggle 首战中进入前 10%这篇文章(https://dnc1994.com/2016/04/rank-10-percent-in-first-kaggle-competition/,作者是章凌豪)。对于两位提供的信息,感激不尽。同时还有Kaggle上一些关于ensemble的文章和代码,比如这篇(https://www.kaggle.com/arthurtok/introduction-to-ensembling-stacking-in-python)。

本文适用于被stacking折磨的死去活来的新手,在网上为数不多的stacking内容里,我已经假设你早已经看过了上述所提到的那几篇有用的文章了。但是,看完之后内心还是卧槽的。我希望下面的内容能成为,你在学习stacking的曲折道路上的一个小火把,给你提供一些微弱的光亮。

本文以Kaggle的Titanic(泰坦尼克预测 https://www.kaggle.com/c/titanic)入门比赛来讲解stacking的应用(两层!)。

数据的行数:train.csv有890行,也就是890个人,test.csv有418行(418个人)。

而数据的列数就看你保留了多少个feature了,因人而异。我自己的train保留了 7+1(1是预测列)。

在网上为数不多的stacking内容里,相信你早看过了这张图:

这张图,如果你能一下子就能看懂,那就OK。

如果一下子看不懂,就麻烦了,在接下来的一段时间内,你就会卧槽卧槽地持续懵逼......

因为这张图极具‘误导性’。(注意!我没说这图是错的,尽管它就是错的!!!但是在网上为数不多教学里有张无码图就不错啦,感恩吧,我这个小弱鸡)。

我把图改了一下:

对于每一轮的 5-fold,Model 1都要做满5次的训练和预测。

Titanic 栗子:

Train Data有890行。(请对应图中的上层部分)

每1次的fold,都会生成 713行 小train, 178行 小test。我们用Model 1来训练 713行的小train,然后预测 178行 小test。预测的结果是长度为 178 的预测值。

这样的动作走5次! 长度为178 的预测值 X 5 = 890 预测值,刚好和Train data长度吻合。这个890预测值是Model 1产生的,我们先存着,因为,一会让它将是第二层模型的训练来源。

重点:这一步产生的预测值我们可以转成 890 X 1 (890 行,1列),记作 P1 (大写P)

接着说 Test Data 有 418 行。(请对应图中的下层部分,对对对,绿绿的那些框框)

每1次的fold,713行 小train训练出来的Model 1要去预测我们全部的Test Data(全部!因为Test Data没有加入5-fold,所以每次都是全部!)。此时,Model 1的预测结果是长度为418的预测值。

这样的动作走5次!我们可以得到一个 5 X 418 的预测值矩阵。然后我们根据行来就平均值,最后得到一个 1 X 418 的平均预测值。

重点:这一步产生的预测值我们可以转成 418 X 1 (418行,1列),记作 p1 (小写p)

走到这里,你的第一层的Model 1完成了它的使命。

第一层还会有其他Model的,比如Model 2,同样的走一遍, 我们有可以得到 890 X 1 (P2) 和 418 X 1 (p2) 列预测值。

这样吧,假设你第一层有3个模型,这样你就会得到:

来自5-fold的预测值矩阵 890 X 3,(P1,P2, P3) 和 来自Test Data预测值矩阵 418 X 3, (p1, p2, p3)。

-----------------------------------------

到第二层了..................

来自5-fold的预测值矩阵 890 X 3 作为你的Train Data,训练第二层的模型 来自Test Data预测值矩阵 418 X 3 就是你的Test Data,用训练好的模型来预测他们吧。

---------------------------------------

最后 ,放出一张Python的Code,在网上为数不多的stacking内容里, 这个几行的code你也早就看过了吧,我之前一直卡在这里,现在加上一点点注解,希望对你有帮助:

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2017-10-10

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏人工智能LeadAI

谈谈Tensorflow的dropout

Dropout这个概念已经推出4年了,它的详细描述见论文(https://arxiv.org/abs/1207.0580)。可是呢,它仿佛是个犹抱琵琶半遮面的美...

3227
来自专栏WOLFRAM

用 Mathematica 生成迷宫

2434
来自专栏宏伦工作室

一次不成功的深度学习实践 - 微信跳一跳

1814
来自专栏AI科技评论

开发 | 训练一个AI给颜值打分,公平公正!

AI 科技评论按:本文作者灰灰,本文原载于作者的知乎专栏。授权转载。 机器学习是不是很无聊,用来用去都是识别字体。能不能帮我找到颜值高的妹子,顺便提高一下姿势水...

2935
来自专栏CSDN技术头条

GAN学习指南:从原理入门到制作生成Demo

作者:何之源,复旦大学计算机科学硕士在读,研究方向为人工智能以及机器学习的应用。 生成式对抗网络(GAN)是近年来大热的深度学习模型。最近正好有空看了这方面的...

2339
来自专栏专知

【干货】对抗自编码器PyTorch手把手实战系列——对抗自编码器学习笔迹风格

即使是非计算机行业, 大家也知道很多有名的神经网络结构, 比如CNN在处理图像上非常厉害, RNN能够建模序列数据. 然而CNN, RNN之类的神经网络结构本身...

3609
来自专栏IT派

推荐|Kaggle机器学习之模型融合(stacking)心得

此文道出了本人学习Stacking入门级应用的心路历程。 在经过了几天漫长的查询资料和整理,脑子不好,理解顿悟花了不少时间。在学习过程中感谢@贝尔塔的模型融合...

4115
来自专栏阮一峰的网络日志

相似图片搜索的原理

上个月,Google把"相似图片搜索"正式放上了首页。 你可以用一张图片,搜索互联网上所有与它相似的图片。点击搜索框中照相机的图标。 ? 一个对话框会出现。 ?...

4347
来自专栏企鹅号快讯

一次不成功的深度学习实践-微信跳一跳

最近微信的跳一跳小程序火了一把,所以前天也更新了微信玩了几盘,最多手动到200左右就不行了。 ? 后来准备用代码写个辅助工具,上Github一查,已经有人做出来...

1985
来自专栏AI研习社

Kaggle 机器学习之模型融合(stacking)心得

此文道出了本人学习 Stacking 入门级应用的心路历程。 在学习过程中感谢 @贝尔塔的模型融合方法(http://t.cn/R62UGLF),以及如何在 K...

3336

扫码关注云+社区