开发 | 谷歌发布TensorFlow 1.4版本:支持分布式训练,迎来三大新变化

e Developers blog正式撰文发布TensorFlow 1.4版本,此次的更新迎来三个重大变化:Keras位于TensorFlow core中,Dataset API支持更多功能,引入效用函数tf.estimator.train_and_evaluate等等。

AI科技评论编辑整理如下:

TensorFlow 1.4目前已经公开,这次迎来重大更新。此次更新后,将支持很多新的、令人兴奋的特征,希望大家都能满意。

Keras

在TensorFlow 1.4版本中,Keras从tf.contrib.keras转移到tf.keras核心包。Keras目前是一个广受欢迎的机器学习框架,它的高级API接口能大大缩短从付诸想法到实践的时间。Keras平滑地集成了其他core TensorFlow功能,包括Estimator API。

事实上,通过调用tf.keras.estimator.model_to_estimator函数,大家可以从任何Keras模型中构建Estimator。

此次更新后,Keras处于TensorFlow core中了,大家可以在自己的产品工作流中用到它。

想要了解更多关于Keras的相关知识,请阅读如下链接:

简单介绍
https://keras.io/#getting-started-30-seconds-to-keras

Keras Sequential model API指南
https://keras.io/getting-started/sequential-model-guide/

Keras Functional model API指南
https://keras.io/getting-started/functional-api-guide/

想要了解更多关于Estimator的相关知识,请阅读如下链接:

介绍TensorFlow Estimator和数据集的博文
https://developers.googleblog.com/2017/09/introducing-tensorflow-datasets.html

数据集

TensorFlow 1.4版本中,Dataset API从tf.contrib.data中转移到tf.data核心包。新版Dataset API将支持Python生成器。强烈建议大家使用Dataset API来为TensorFlow模型创建input pipeline,原因有如下几点:

  • 比起老版的API,这次更新的Dataset API提供了更多功能(feed_dict函数、基于队列的pipeline)
  • Dataset API执行效果更好
  • Dataset API更干净,更易于使用

未来的开发重点将放在Dataset API上,而不是着眼于之前的API。如果想使用数据集,请阅读如下说明:

介绍TensorFlow Estimator和数据集的博文(链接如上)

TensorFlow程序员数据导入篇指南
https://www.tensorflow.org/versions/r1.4/programmers_guide/datasets

介绍Dataset API的幻灯片(带有讲者注释)
http://.cn/RlWCD1b

分布式训练&评估Estimator

TensorFlow 1.4还引入了效用函数tf.estimator.train_and_evaluate,这能简化训练、评估以及

输出Estimator模型的过程。该函数在训练和评估过程中能支持分布式执行,同时也仍然支持本地执行。

其他增强功能

除了前面所述的一系列功能,TensorFlow 1.4还引入了一些额外的增强功能,在Release Note有详细描述。

地址:
https://github.com/tensorflow/tensorflow/blob/master/RELEASE.md

安装TensorFlow 1.4

目前可以使用标准pip来安装TensorFlow 1.4版本。

# Note: the following command will overwrite any existing TensorFlow

# installation.

$ pip install --ignore-installed --upgrade tensorflow

# Use pip for Python 2.7

# Use pip3 instead of pip for Python 3.x

另外,tensorflow.org中的文件也已更新到1.4版本。

最后,TensorFlow的强大功能依赖于社群中的贡献者们,非常感谢大家帮助我们一起进行开发。还没有加入我们社群的人,请不要犹豫,大家一起在GitHub开发源代码或者在Stack Overflow上帮助回答问题吧。

希望你们都能喜欢这些新功能。

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2017-11-08

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏人工智能

Apache Spark 2.0预览:机器学习模型持久性

以上所有应用场景在模型持久性、保存和加载模型的能力方面都更为容易。随着Apache Spark 2.0即将发布,Spark的机器学习库MLlib将在DataFr...

4618
来自专栏AI研习社

如何理解Nvidia英伟达的Multi-GPU多卡通信框架NCCL?

深度学习中常常需要多GPU并行训练,而Nvidia的NCCL库NVIDIA/nccl(https://github.com/NVIDIA/nccl)在各大深度学...

4409
来自专栏编程

安卓手机如何玩转动作手势检测?有TensorFlow就够了,附实用教程

? 原文来源:Lemberg Solutions Ltd 作者:Zahra Mahoor、Jack Felag、 Josh Bongard 编译:嗯~阿童木呀...

4157
来自专栏CSDN技术头条

基于OpenGL ES的深度学习框架编写

背景与工程定位 背景 项目组基于深度学习实现了视频风格化和人像抠图的功能,但这是在PC/服务端上跑的,现在需要移植到移动端,因此需要一个移动端的深度学习的计算框...

4398
来自专栏新智元

谷歌、亚马逊和百度的深度学习野心:TensorFlow、MXNet、PaddlePaddle 三大框架对比

【新智元导读】本文作者陈汝丹从定位、框架使用、分布式构成三个方面比较了 TensorFlow、MXNet、PaddlePaddle三个常用开源框架。 本文转载自...

3676
来自专栏企鹅号快讯

谷歌TensorFlowLite正式发布,机器学习框架向移动端大步挺进!

上个月,谷歌正式宣布推出针对移动设备和嵌入式设备的轻量级解决方案 TensorFlow Lite。而在此之前,今年 5 月份的谷歌 I/O 大会上他们已经对此进...

2097
来自专栏WOLFRAM

Mathematica 11 在化学中的应用

1376
来自专栏机器之心

教程 | 从预处理到部署:如何使用Lore快速构建机器学习模型

选自Medium 作者:Montana Low 机器之心编译 参与:李诗萌、思源 机器学习的构建和部署通常需要非常多的工作与努力,这对于软件开发者和入门者造成了...

4005
来自专栏人人都是极客

自动驾驶的模型预测控制

我们实施了一个模型预测控制来驱动赛道上的赛车。但是这一次我们没有交叉错误,我们必须自己计算。另外,在连接延迟之上的执行命令之间有100毫秒的延迟。 这篇文章从非...

8444
来自专栏CDA数据分析师

工具 | Python 和 R 数据分析/挖掘工具互查

在此总结一些在数据分析/挖掘中可能用到的功能,方便大家索引或者从一种语言迁移到另一种。如果大家已经熟悉python和R的模块/包载入方式,那下面的表查找起来相对...

2457

扫码关注云+社区

领取腾讯云代金券