开发 | 谷歌发布TensorFlow 1.4版本:支持分布式训练,迎来三大新变化

e Developers blog正式撰文发布TensorFlow 1.4版本,此次的更新迎来三个重大变化:Keras位于TensorFlow core中,Dataset API支持更多功能,引入效用函数tf.estimator.train_and_evaluate等等。

AI科技评论编辑整理如下:

TensorFlow 1.4目前已经公开,这次迎来重大更新。此次更新后,将支持很多新的、令人兴奋的特征,希望大家都能满意。

Keras

在TensorFlow 1.4版本中,Keras从tf.contrib.keras转移到tf.keras核心包。Keras目前是一个广受欢迎的机器学习框架,它的高级API接口能大大缩短从付诸想法到实践的时间。Keras平滑地集成了其他core TensorFlow功能,包括Estimator API。

事实上,通过调用tf.keras.estimator.model_to_estimator函数,大家可以从任何Keras模型中构建Estimator。

此次更新后,Keras处于TensorFlow core中了,大家可以在自己的产品工作流中用到它。

想要了解更多关于Keras的相关知识,请阅读如下链接:

简单介绍
https://keras.io/#getting-started-30-seconds-to-keras

Keras Sequential model API指南
https://keras.io/getting-started/sequential-model-guide/

Keras Functional model API指南
https://keras.io/getting-started/functional-api-guide/

想要了解更多关于Estimator的相关知识,请阅读如下链接:

介绍TensorFlow Estimator和数据集的博文
https://developers.googleblog.com/2017/09/introducing-tensorflow-datasets.html

数据集

TensorFlow 1.4版本中,Dataset API从tf.contrib.data中转移到tf.data核心包。新版Dataset API将支持Python生成器。强烈建议大家使用Dataset API来为TensorFlow模型创建input pipeline,原因有如下几点:

  • 比起老版的API,这次更新的Dataset API提供了更多功能(feed_dict函数、基于队列的pipeline)
  • Dataset API执行效果更好
  • Dataset API更干净,更易于使用

未来的开发重点将放在Dataset API上,而不是着眼于之前的API。如果想使用数据集,请阅读如下说明:

介绍TensorFlow Estimator和数据集的博文(链接如上)

TensorFlow程序员数据导入篇指南
https://www.tensorflow.org/versions/r1.4/programmers_guide/datasets

介绍Dataset API的幻灯片(带有讲者注释)
http://.cn/RlWCD1b

分布式训练&评估Estimator

TensorFlow 1.4还引入了效用函数tf.estimator.train_and_evaluate,这能简化训练、评估以及

输出Estimator模型的过程。该函数在训练和评估过程中能支持分布式执行,同时也仍然支持本地执行。

其他增强功能

除了前面所述的一系列功能,TensorFlow 1.4还引入了一些额外的增强功能,在Release Note有详细描述。

地址:
https://github.com/tensorflow/tensorflow/blob/master/RELEASE.md

安装TensorFlow 1.4

目前可以使用标准pip来安装TensorFlow 1.4版本。

# Note: the following command will overwrite any existing TensorFlow

# installation.

$ pip install --ignore-installed --upgrade tensorflow

# Use pip for Python 2.7

# Use pip3 instead of pip for Python 3.x

另外,tensorflow.org中的文件也已更新到1.4版本。

最后,TensorFlow的强大功能依赖于社群中的贡献者们,非常感谢大家帮助我们一起进行开发。还没有加入我们社群的人,请不要犹豫,大家一起在GitHub开发源代码或者在Stack Overflow上帮助回答问题吧。

希望你们都能喜欢这些新功能。

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2017-11-08

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏量子位

PyTorch更新了:支持Windows,新增零维张量

PyTorch今天发布了v0.4.0版本,网友们反响非常热烈,甚至有人说:感觉就像提前过圣诞~

981
来自专栏新智元

另一种开源:OpenAI 介绍深度学习基础设施

【新智元导读】OpenAI 昨天在博客发文,结合实例,介绍了 OpenAI 进行深度学习研究时采用的基础设施配置,并且提供了相关开源代码。文章激起了很多反响,其...

3745
来自专栏CDA数据分析师

盘点 | 今年GitHub排名前20的Python机器学习开源项目

当今时代,开源是创新和技术快速发展的核心。本文来自 KDnuggets 的年度盘点,介绍了 2016 年排名前 20 的 Python 机器学习开源项目,在介绍...

2516
来自专栏人工智能头条

机器学习即服务之BigML特性介绍和入门教程

1435
来自专栏知晓程序

全国通用的「微信身份证」来了!这里有一份最全的申请攻略 | 国家队

1323
来自专栏企鹅号快讯

“你的深度学习框架包含15个漏洞”新知

来源 |量子位(QbitAI) 整理 |苏锋 编者按: 目前,一大批科技巨头和创业公司将目光聚集在可进行自主深度学习的AI身上。无人驾驶汽车、机器人医生、机器投...

2196
来自专栏生信技能树

一篇文章学会miRNA-seq分析

第一讲:文献选择与解读 前阵子逛BioStar论坛的时候看到了一个关于miRNA分析的问题,提问者从NCBI的SRA中下载文献提供的原始数据,然后处理的时候出现...

6886
来自专栏祝威廉

Spark团队新作MLFlow 解决了什么问题

中午的时候看到了Spark团队新作MLFlow,因为我本身也在做类似的解决方案MLSQL,自然要看看Meitai是怎么做的。所以第一时间把MLFlow相关文档 ...

742
来自专栏思影科技

疲劳与失联:睡眠剥夺导致脑连接模块性衰退

以色列特拉维夫大学(Tel-Aviv University)Wohl 医学影像研究所的Eti Ben Simon等人在Human Brain Mapping杂志...

3146
来自专栏AI研习社

用神经网络对页面登录进行多参数优化的小妙招

我很乐意分享我用神经网络对页面登录进行多参数优化的一些实验。我想到这个点子已经有半年了,而且我发现从自动操作这个角度来看它十分有趣。A/B 测试会消耗市场专家...

522

扫码关注云+社区