前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >生产环境大型sql语句调优实战第一篇(一) (r2笔记第31天)

生产环境大型sql语句调优实战第一篇(一) (r2笔记第31天)

作者头像
jeanron100
发布2018-03-14 15:32:41
9600
发布2018-03-14 15:32:41
举报
文章被收录于专栏:杨建荣的学习笔记
代码语言:javascript
复制
在生产环境中有一条sql语句的性能极差,在早晨非高峰时段运行抽取数据,平均要花费40分钟,有时候竟然要跑10个多小时。
sql语句比较长,需要点耐心往下看。我对表的数据量都做了简单的说明。
首先拿到sql语句,一看到关联的表有一长串,而且都是很大的表。如果性能很差,可能和走全表扫描有关,还有可能和多表关联时,表的查取顺序也有一定的关系。


SELECT   DISTINCT CA.L9_CONVERGENCE_CODE AS ATB2,
                CU.CUST_SUB_TYPE AS ACCOUNT_TYPE,
                CST.DESCRIPTION AS ACCOUNT_TYPE_DESC,
                SS.PRIM_RESOURCE_VAL AS MSISDN,
                CA.BAN AS BAN_KEY,
                to_char(MO.MEMO_DATE, 'YYYYMMDD') AS MEMO_DATE,
                CU.L9_IDENTIFICATION AS THAI_ID,
                SS.SUBSCRIBER_NO AS SUBS_KEY,
                SS.DEALER_CODE AS SHOP_CODE,
                CD.DESCRIPTION AS SHOP_NAME,
                MOT.SHORT_DESC,
                REGEXP_SUBSTR(MO.ATTR1VALUE, '[^ ;]+', 1, 3) STAFF_ID,
                MO.OPERATOR_ID AS USER_ID,
                MO.MEMO_SYSTEM_TEXT,
                CO2.SOC_NAME AS FIRST_SOCNAME,
                CO3.SOC_NAME AS PREVIOUS_SOCNAME,
                CO.SOC_NAME AS CURRENT_SOCNAME,
                REGEXP_SUBSTR(MO.ATTR1VALUE, '[^ ; ]+', 1, 1) NAME,
                CO.SOC_DESCRIPTION AS CURRENT_PP_DESC,
                CO3.SOC_DESCRIPTION AS PREV_PP_DESC,
                CO.SOC_CD AS SOC_CD,
                (SELECT sum(BR.AMOUNT)
                   FROM BL1_RC_RATES BR, CUSTOMER CU, SUBSCRIBER SS
                  WHERE BR.SERVICE_RECEIVER_ID = SS.SUBSCRIBER_NO
                    AND BR.RECEIVER_CUSTOMER = SS.CUSTOMER_ID
                    AND BR.EFFECTIVE_DATE <= BR.EXPIRATION_DATE 
                  AND((SS. SUB_STATUS <> 'C' and SS.
                            SUB_STATUS <> 'T' and BR.EXPIRATION_DATE is null)
                        OR (SS. SUB_STATUS = 'C' and
                            BR.EXPIRATION_DATE like SS.EFFECTIVE_DATE))
                    AND BR.PP_IND = 'Y'
                    AND BR.CYCLE_CODE = CU.BILL_CYCLE) AS PP_RATE,
                CU.BILL_CYCLE AS CYCLE_CODE,
                to_char(NVL(SS.L9_TMV_ACT_DATE, SS.INIT_ACT_DATE),'YYYYMMDD') AS ACTIVATED_DATE,
                to_char(CD.EFFECTIVE_DATE, 'YYYYMMDD') AS SHOP_EFFECTIVE_DATE,
                CD.EXPIRATION_DATE AS SHOP_EXPIRED_DATE,
                CA.L9_COMPANY_CODE AS COMPANY_CODE
  FROM SERVICE_DETAILS S, --大分区表,千万级数据量,存放着交易的明细信息
       PRODUCT   CO,  --产品配置表,大概几万条左右
       CSM_PAY_CHANNEL   CPC, --账务相关表,百万级
       ACCOUNT       CA,  --账务相关表,百万级
       SUBSCRIBER        SS, --用户相关表,百万级
       CUSTOMER          CU, --用户相关表,百万级
       CUSTOMER_SUB_TYPE CST, --用户配置表,几千条数据
       CSM_DEALER        CD, --产品配置表,大概几千条左右
       SERVICE_DETAILS S2,
       PRODUCT   CO2,
       SERVICE_DETAILS S3,
       PRODUCT    CO3,
       MEMO MO  ,   --交易备注表,数据量过亿
       MEMO_TYPE     MOT, --配置表,数据量几千
       LOGICAL_DATE      LO, --时间配置表,数据量1千多
       CHARGE_DETAILS CHD --交易表,数据量千万
 WHERE SS.SUBSCRIBER_NO = CHD.AGREEMENT_NO  
   AND CPC.PYM_CHANNEL_NO = CHD.TARGET_PCN
   AND CHD.CHG_SPLIT_TYPE = 'DR'
   AND CHD.EXPIRATION_DATE IS NULL
   AND S.SOC = CO.SOC_CD
   AND CO.SOC_TYPE = 'P'
   AND S.AGREEMENT_NO = SS.SUBSCRIBER_NO
   AND SS.PRIM_RESOURCE_TP = 'C'
   AND CPC.PAYMENT_CATEGORY = 'POST'
   AND CA.BAN = CPC.BAN
   AND (CA.L9_COMPANY_CODE = 'RF' OR CA.L9_COMPANY_CODE = 'RM' OR
       CA.L9_COMPANY_CODE = 'TM')
   AND SS.CUSTOMER_ID = CU.CUSTOMER_ID
   AND CU.CUST_SUB_TYPE = CST.CUST_SUB_TYPE
   AND CU.CUSTOMER_TYPE = CST.CUSTOMER_TYPE
   AND SS.DEALER_CODE = CD.DEALER
   AND S2.EFFECTIVE_DATE= (SELECT MAX(SA1.EFFECTIVE_DATE)
                             FROM SERVICE_DETAILS SA1, PRODUCT o1
                            WHERE SA1.AGREEMENT_NO = SS.SUBSCRIBER_NO
                              AND co.soc_cd = sa1.soc
                              and co.soc_type = 'P'
                              )
   AND S2.AGREEMENT_NO = S.AGREEMENT_NO
   AND S2.SOC = CO2.SOC_CD
   AND CO2.SOC_TYPE = 'P'
   AND S2.EFFECTIVE_DATE = (SELECT MIN(SA1.EFFECTIVE_DATE)
                             FROM SERVICE_DETAILS SA1, PRODUCT o1
                            WHERE SA1.AGREEMENT_NO = SS.SUBSCRIBER_NO
                              AND co2.soc_cd = sa1.soc
                              and co.soc_type = 'P'
                              )
   AND S3.AGREEMENT_NO = S.AGREEMENT_NO
   AND S3.SOC = CO3.SOC_CD
   AND CO3.SOC_TYPE = 'P'
   AND S3.EFFECTIVE_DATE =
       (SELECT MAX(SA1.EFFECTIVE_DATE)
          FROM SERVICE_DETAILS SA1, PRODUCT o1
         WHERE SA1.AGREEMENT_NO = SS.SUBSCRIBER_NO
           AND SA1.EFFECTIVE_DATE <
               (SELECT MAX(SA1.EFFECTIVE_DATE)
                  FROM SERVICE_DETAILS SA1, PRODUCT o1
                 WHERE SA1.AGREEMENT_NO = SS.SUBSCRIBER_NO
                   and co3.soc_cd = sa1.soc
                   and co3.soc_type = 'P'
                   )
           and co3.soc_cd = sa1.soc
           and o1.soc_type = 'P'
           )           
   AND MO.ENTITY_ID = SS.SUBSCRIBER_NO
   AND MO.ENTITY_TYPE_ID = 6
   AND MO.MEMO_TYPE_ID = MOT.MEMO_TYPE_ID
   AND TRUNC(MO.SYS_CREATION_DATE) = (select TRUNC(LO.LOGICAL_DATE - 1) from lo)
   TRUNC(LO.LOGICAL_DATE - 1)
   AND LO.EXPIRATION_DATE IS NULL
   AND LO.LOGICAL_DATE_TYPE = 'B'
   AND LO.EXPIRATION_DATE IS NULL
   AND (MOT.SHORT_DESC = 'BCN' OR MOT.SHORT_DESC = 'BCNM' OR
     ............
  )


sql语句的执行计划如下,可以看到基本没有性能可言。在几个大表上都做了全表扫描,而且连接的消耗极大。庆幸的是这条sql语句貌似已经使用sql profile调优过了,性能才保持在40左右。


PLAN_TABLE_OUTPUT
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Plan hash value: 3445667740


----------------------------------------------------------------------------------------------------------------------------------------------
| Id  | Operation                                    | Name                  | Rows  | Bytes |TempSpc| Cost (%CPU)| Time     | Pstart| Pstop |
----------------------------------------------------------------------------------------------------------------------------------------------
|   0 | SELECT STATEMENT                             |                       |     1 |   551 |       |   235K  (1)| 00:47:03 |       |       |
|   1 |  SORT AGGREGATE                              |                       |     1 |    56 |       |            |          |       |       |
|*  2 |   HASH JOIN                                  |                       |    10G|   541G|  4840K|   305K (13)| 01:01:04 |       |       |
|*  3 |    HASH JOIN                                 |                       | 76218 |  3944K|    24M|   259K  (1)| 00:51:59 |       |       |
|   4 |     PARTITION RANGE ALL                      |                       |   601K|    17M|       |   248K  (1)| 00:49:38 |     1 |    11 |
|*  5 |      TABLE ACCESS FULL                       | RC_RATES              |   601K|    17M|       |   248K  (1)| 00:49:38 |     1 |    11 |
|   6 |     TABLE ACCESS FULL                        | SUBSCRIBER            |  1249K|    26M|       |  8495   (1)| 00:01:42 |       |       |
|   7 |    TABLE ACCESS FULL                         | CUSTOMER              |  1226K|  3591K|       |  7441   (1)| 00:01:30 |       |       |
|   8 |  HASH UNIQUE                                 |                       |     1 |   551 |       |   235K  (1)| 00:47:03 |       |       |
|*  9 |   FILTER                                     |                       |       |       |       |            |          |       |       |
|  10 |    NESTED LOOPS                              |                       |       |       |       |            |          |       |       |
|  11 |     NESTED LOOPS                             |                       |     1 |   551 |       |   235K  (1)| 00:47:03 |       |       |
|  12 |      NESTED LOOPS                            |                       |     5 |  2485 |       |   235K  (1)| 00:47:03 |       |       |
|  13 |       NESTED LOOPS                           |                       |     1 |   476 |       |   235K  (1)| 00:47:03 |       |       |
|* 14 |        HASH JOIN                             |                       |     2 |   930 |       |   235K  (1)| 00:47:03 |       |       |
|* 15 |         TABLE ACCESS FULL                    | LOGICAL_DATE          |     1 |    18 |       |    12   (0)| 00:00:01 |       |       |
|  16 |         NESTED LOOPS                         |                       |   209 | 93423 |       |   235K  (1)| 00:47:02 |       |       |
|  17 |          NESTED LOOPS                        |                       |     5 |  1690 |       |   234K  (1)| 00:46:59 |       |       |
|  18 |           NESTED LOOPS                       |                       |    17 |  5406 |       |   234K  (1)| 00:46:59 |       |       |
|  19 |            NESTED LOOPS                      |                       |     2 |   594 |       |   234K  (1)| 00:46:59 |       |       |
|  20 |             NESTED LOOPS                     |                       |     3 |   858 |       |   234K  (1)| 00:46:59 |       |       |
|  21 |              NESTED LOOPS                    |                       |     3 |   807 |       |   234K  (1)| 00:46:59 |       |       |
|  22 |               NESTED LOOPS                   |                       |     8 |  1992 |       |   234K  (1)| 00:46:59 |       |       |
|* 23 |                HASH JOIN                     |                       |    30 |  5850 |   187M|   234K  (1)| 00:46:59 |       |       |
|* 24 |                 HASH JOIN                    |                       |  1059K|   175M|    33M|   119K  (1)| 00:23:56 |       |       |
|  25 |                  VIEW                        | VW_SQ_1               |  1318K|    18M|       | 86070   (1)| 00:17:13 |       |       |
|  26 |                   HASH GROUP BY              |                       |  1318K|    37M|    50M| 86070   (1)| 00:17:13 |       |       |
|* 27 |                    HASH JOIN                 |                       |  1318K|    37M|       | 75316   (1)| 00:15:04 |       |       |
|* 28 |                     MAT_VIEW ACCESS FULL     | PRODUCT               |   666 |  5994 |       |    48   (0)| 00:00:01 |       |       |
|  29 |                     TABLE ACCESS FULL        | SERVICE_DETAILS       |    19M|   392M|       | 75198   (1)| 00:15:03 |       |       |
|* 30 |                  HASH JOIN                   |                       |  1059K|   160M|       | 23306   (1)| 00:04:40 |       |       |
|  31 |                   MAT_VIEW ACCESS FULL       | CSM_DEALER            | 16895 |   841K|       |    40   (0)| 00:00:01 |       |       |
|* 32 |                   HASH JOIN                  |                       |  1099K|   113M|    71M| 23262   (1)| 00:04:40 |       |       |
|* 33 |                    HASH JOIN                 |                       |  1079K|    58M|       |  7473   (1)| 00:01:30 |       |       |
|  34 |                     MAT_VIEW ACCESS FULL     | CUSTOMER_SUB_TYPE     |    59 |  1652 |       |     3   (0)| 00:00:01 |       |       |
|  35 |                     TABLE ACCESS FULL        | CUSTOMER              |  1226K|    33M|       |  7465   (1)| 00:01:30 |       |       |
|* 36 |                    TABLE ACCESS FULL         | SUBSCRIBER            |  1248K|    60M|       |  8534   (1)| 00:01:43 |       |       |
|  37 |                 TABLE ACCESS FULL            | SERVICE_DETAILS       |    19M|   392M|       | 75198   (1)| 00:15:03 |       |       |
|* 38 |                MAT_VIEW ACCESS BY INDEX ROWID| PRODUCT               |     1 |    54 |       |     1   (0)| 00:00:01 |       |       |
|* 39 |                 INDEX RANGE SCAN             | PRODUCT_1IX           |     1 |       |       |     1   (0)| 00:00:01 |       |       |
|* 40 |               TABLE ACCESS BY INDEX ROWID    | CHARGE_DETAILS        |     1 |    20 |       |     1   (0)| 00:00:01 |       |       |
|* 41 |                INDEX RANGE SCAN              | CHARGE_DETAILS_1IX    |     7 |       |       |     1   (0)| 00:00:01 |       |       |
|* 42 |              TABLE ACCESS BY INDEX ROWID     | CSM_PAY_CHANNEL       |     1 |    17 |       |     1   (0)| 00:00:01 |       |       |
|* 43 |               INDEX UNIQUE SCAN              | CSM_PAY_CHANNEL_PK    |     1 |       |       |     1   (0)| 00:00:01 |       |       |
|* 44 |             TABLE ACCESS BY INDEX ROWID      | CSM_ACCOUNT           |     1 |    11 |       |     1   (0)| 00:00:01 |       |       |
|* 45 |              INDEX UNIQUE SCAN               | CSM_ACCOUNT_PK        |     1 |       |       |     1   (0)| 00:00:01 |       |       |
|  46 |            TABLE ACCESS BY INDEX ROWID       | SERVICE_DETAILS       |     8 |   168 |       |     1   (0)| 00:00:01 |       |       |
|* 47 |             INDEX RANGE SCAN                 | SERVICE_DETAILS_PK    |     8 |       |       |     1   (0)| 00:00:01 |       |       |
|* 48 |           MAT_VIEW ACCESS BY INDEX ROWID     | PRODUCT               |     1 |    20 |       |     1   (0)| 00:00:01 |       |       |
|* 49 |            INDEX RANGE SCAN                  | PRODUCT_1IX           |     1 |       |       |     1   (0)| 00:00:01 |       |       |
|  50 |          PARTITION RANGE ALL                 |                       |    42 |  4578 |       |    57   (0)| 00:00:01 |     1 |   289 |
|  51 |           TABLE ACCESS BY LOCAL INDEX ROWID  | MEMO                  |    42 |  4578 |       |    57   (0)| 00:00:01 |     1 |   289 |
|* 52 |            INDEX RANGE SCAN                  | MEMO_1IX              |     1 |       |       |    57   (0)| 00:00:01 |     1 |   289 |
|* 53 |        MAT_VIEW ACCESS BY INDEX ROWID        | MEMO_TYPE             |     1 |    11 |       |     1   (0)| 00:00:01 |       |       |
|* 54 |         INDEX UNIQUE SCAN                    | MEMO_TYPE_PK          |     1 |       |       |     1   (0)| 00:00:01 |       |       |
|  55 |       TABLE ACCESS BY INDEX ROWID            | SERVICE_DETAILS       |     8 |   168 |       |     1   (0)| 00:00:01 |       |       |
|* 56 |        INDEX RANGE SCAN                      | SERVICE_DETAILS_PK    |     8 |       |       |     1   (0)| 00:00:01 |       |       |
|* 57 |      INDEX RANGE SCAN                        | PRODUCT_1IX           |     1 |       |       |     1   (0)| 00:00:01 |       |       |
|* 58 |     MAT_VIEW ACCESS BY INDEX ROWID           | PRODUCT               |     1 |    54 |       |     1   (0)| 00:00:01 |       |       |
|  59 |    SORT AGGREGATE                            |                       |     1 |    30 |       |            |          |       |       |
|  60 |     NESTED LOOPS                             |                       |       |       |       |            |          |       |       |
|  61 |      NESTED LOOPS                            |                       |     2 |    60 |       |     4   (0)| 00:00:01 |       |       |
|  62 |       TABLE ACCESS BY INDEX ROWID            | SERVICE_DETAILS       |     8 |   168 |       |     1   (0)| 00:00:01 |       |       |
|* 63 |        INDEX RANGE SCAN                      | SERVICE_DETAILS_PK    |     8 |       |       |     1   (0)| 00:00:01 |       |       |
|* 64 |       INDEX RANGE SCAN                       | PRODUCT_1IX           |     1 |       |       |     1   (0)| 00:00:01 |       |       |
|* 65 |      MAT_VIEW ACCESS BY INDEX ROWID          | PRODUCT               |     1 |     9 |       |     1   (0)| 00:00:01 |       |       |
|  66 |    SORT AGGREGATE                            |                       |     1 |    30 |       |            |          |       |       |
|* 67 |     FILTER                                   |                       |       |       |       |            |          |       |       |
|  68 |      NESTED LOOPS                            |                       |       |       |       |            |          |       |       |
|  69 |       NESTED LOOPS                           |                       |     2 |    60 |       |     4   (0)| 00:00:01 |       |       |
|  70 |        TABLE ACCESS BY INDEX ROWID           | SERVICE_DETAILS       |     8 |   168 |       |     1   (0)| 00:00:01 |       |       |
|* 71 |         INDEX RANGE SCAN                     | SERVICE_DETAILS_PK    |     8 |       |       |     1   (0)| 00:00:01 |       |       |
|* 72 |        INDEX RANGE SCAN                      | PRODUCT_1IX           |     1 |       |       |     1   (0)| 00:00:01 |       |       |
|* 73 |       MAT_VIEW ACCESS BY INDEX ROWID         | PRODUCT               |     1 |     9 |       |     1   (0)| 00:00:01 |       |       |
|  74 |      SORT AGGREGATE                          |                       |     1 |    30 |       |            |          |       |       |
|  75 |       NESTED LOOPS                           |                       |       |       |       |            |          |       |       |
|  76 |        NESTED LOOPS                          |                       |     2 |    60 |       |     4   (0)| 00:00:01 |       |       |
|  77 |         TABLE ACCESS BY INDEX ROWID          | SERVICE_DETAILS       |     8 |   168 |       |     1   (0)| 00:00:01 |       |       |
|* 78 |          INDEX RANGE SCAN                    | SERVICE_DETAILS_PK    |     8 |       |       |     1   (0)| 00:00:01 |       |       |
|* 79 |         INDEX RANGE SCAN                     | PRODUCT_1IX           |     1 |       |       |     1   (0)| 00:00:01 |       |       |
|* 80 |        MAT_VIEW ACCESS BY INDEX ROWID        | PRODUCT               |     1 |     9 |       |     1   (0)| 00:00:01 |       |       |
----------------------------------------------------------------------------------------------------------------------------------------------


Note
-----
   - SQL profile "SYS_SQLPROF_0141a69ce4f40002" used for this statement


得到了执行计划,和数据的情况。下面需要做的工作有以下几步:
--查找性能瓶颈,
根据反馈,查取的数据其实并不错,可能在几千条以内的样子。但是有很多的查询条件过滤。

如果有些大表走了索引,但是join的消耗很大,很可能就是表的查询顺序不当导致的。
有些情况下使用全表扫描的代价要比使用索引要低。
像这个例子,排查后,logical_date表中虽然有上千条记录,但是实际上使用的只有一条记录。
memo这个表是最大的表,由上亿条记录,走了索引。但是join的效率很差,根据排查,memo这个表是这个查询的关键,需要根据时间来得到前一天的数据变化。

如果根据时间来过滤,可以过滤到绝大多数的数据。
上一条记录过滤后只剩下 74811 rows selected.
如果关联配置表memo_type查询的数据就会一下子减少到1713条左右,这是对于性能极大的提升和关键。

但是问题就来了,如果按照时间来查询,这个大表上没有和时间相关的字段,查询走全表扫描会很长,大概在5分钟左右。

--without parallel
74811 rows selected.
Elapsed: 00:03:23.10
这个时候如果只能走全表扫描,但是想使得速度能够提升,可以考虑并行,加入并行后,查询速度控制在了一分钟以内。

--add table mo1_memo_type, with parllel 8
1713 rows selected.

--加上配置表的过滤条件,查取的数据更少了,速度也有了提升。
Elapsed: 00:00:41.85

如果是以Memo表作为首发,表的执行计划就有了很大的不同,关联时间时,会不停的去和Logical_date表做关联,其实Logical_date表里只需要一条记录,查看执行计划却走了笛卡尔积连接。

--去除笛卡尔积连接 -去除笛卡尔积连接可以考虑采用with的句式,把数据先缓存起来,作为后续的查询,就避免了反复全表扫描的消耗。 --简化sql 可以看到sql语句中存在着很多重复的过滤条件,需要考虑在不改变业务的情况下保证语句的简单易读。 --减少/去除全表扫描 尝试减少或者去除全表扫描,保证效率。 --子查询最大程度过滤结果集 可以考虑使用一些尽可能过滤较多数据的子查询来提高效率。 --观察执行计划中表的查取顺序。 明天继续更新更多的细节。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2014-07-12,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 杨建荣的学习笔记 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档