【Java提高十八】Map接口集合详解

四、Map接口

Map与List、Set接口不同,它是由一系列键值对组成的集合,提供了key到Value的映射。同时它也没有继承Collection。在Map中它保证了key与value之间的一一对应关系。也就是说一个key对应一个value,所以它不能存在相同的key值,当然value值可以相同。实现map的有:HashMap、TreeMap、HashTable、Properties、EnumMap。

4.1、HashMap

以哈希表数据结构实现,查找对象时通过哈希函数计算其位置,它是为快速查询而设计的,其内部定义了一个hash表数组(Entry[] table),元素会通过哈希转换函数将元素的哈希地址转换成数组中存放的索引,如果有冲突,则使用散列链表的形式将所有相同哈希地址的元素串起来,可能通过查看HashMap.Entry的源码它是一个单链表结构。


HashMap详解

HashMap也是我们使用非常多的Collection,它是基于哈希表的 Map 接口的实现,以key-value的形式存在。在HashMap中,key-value总是会当做一个整体来处理,系统会根据hash算法来来计算key-value的存储位置,我们总是可以通过key快速地存、取value。下面就来分析HashMap的存取。

一、定义

HashMap实现了Map接口,继承AbstractMap。其中Map接口定义了键映射到值的规则,而AbstractMap类提供 Map 接口的骨干实现,以最大限度地减少实现此接口所需的工作,其实AbstractMap类已经实现了Map,这里标注Map LZ觉得应该是更加清晰吧!

二、构造函数

HashMap提供了三个构造函数:

HashMap():构造一个具有默认初始容量 (16) 和默认加载因子 (0.75) 的空 HashMap。

HashMap(int initialCapacity):构造一个带指定初始容量和默认加载因子 (0.75) 的空 HashMap。

HashMap(int initialCapacity, float loadFactor):构造一个带指定初始容量和加载因子的空 HashMap。

在这里提到了两个参数:初始容量,加载因子。这两个参数是影响HashMap性能的重要参数,其中容量表示哈希表中桶的数量,初始容量是创建哈希表时的容量,加载因子是哈希表在其容量自动增加之前可以达到多满的一种尺度,它衡量的是一个散列表的空间的使用程度,负载因子越大表示散列表的装填程度越高,反之愈小。对于使用链表法的散列表来说,查找一个元素的平均时间是O(1+a),因此如果负载因子越大,对空间的利用更充分,然而后果是查找效率的降低;如果负载因子太小,那么散列表的数据将过于稀疏,对空间造成严重浪费。系统默认负载因子为0.75,一般情况下我们是无需修改的。

HashMap是一种支持快速存取的数据结构,要了解它的性能必须要了解它的数据结构。

三、数据结构

我们知道在Java中最常用的两种结构是数组和模拟指针(引用),几乎所有的数据结构都可以利用这两种来组合实现,HashMap也是如此。实际上HashMap是一个“链表散列”,如下是它数据结构:

从上图我们可以看出HashMap底层实现还是数组,只是数组的每一项都是一条链。其中参数initialCapacity就代表了该数组的长度。下面为HashMap构造函数的源码:

从源码中可以看出,每次新建一个HashMap时,都会初始化一个table数组。table数组的元素为Entry节点。

其中Entry为HashMap的内部类,它包含了键key、值value、下一个节点next,以及hash值,这是非常重要的,正是由于Entry才构成了table数组的项为链表。

上面简单分析了HashMap的数据结构,下面将探讨HashMap是如何实现快速存取的。

四、存储实现:put(key,vlaue)

首先我们先看源码

通过源码我们可以清晰看到HashMap保存数据的过程为:首先判断key是否为null,若为null,则直接调用putForNullKey方法。若不为空则先计算key的hash值,然后根据hash值搜索在table数组中的索引位置,如果table数组在该位置处有元素,则通过比较是否存在相同的key,若存在则覆盖原来key的value,否则将该元素保存在链头(最先保存的元素放在链尾)。若table在该处没有元素,则直接保存。这个过程看似比较简单,其实深有内幕。有如下几点:

1、 先看迭代处。此处迭代原因就是为了防止存在相同的key值,若发现两个hash值(key)相同时,HashMap的处理方式是用新value替换旧value,这里并没有处理key,这就解释了HashMap中没有两个相同的key。

2、 在看(1)、(2)处。这里是HashMap的精华所在。首先是hash方法,该方法为一个纯粹的数学计算,就是计算h的hash值。

我们知道对于HashMap的table而言,数据分布需要均匀(最好每项都只有一个元素,这样就可以直接找到),不能太紧也不能太松,太紧会导致查询速度慢,太松则浪费空间。计算hash值后,怎么才能保证table元素分布均与呢?我们会想到取模,但是由于取模的消耗较大,HashMap是这样处理的:调用indexFor方法。

HashMap的底层数组长度总是2的n次方,在构造函数中存在:capacity <<= 1;这样做总是能够保证HashMap的底层数组长度为2的n次方。当length为2的n次方时,h&(length - 1)就相当于对length取模,而且速度比直接取模快得多,这是HashMap在速度上的一个优化。至于为什么是2的n次方下面解释。

我们回到indexFor方法,该方法仅有一条语句:h&(length - 1),这句话除了上面的取模运算外还有一个非常重要的责任:均匀分布table数据和充分利用空间。

这里我们假设length为16(2^n)和15,h为5、6、7。

当n=15时,6和7的结果一样,这样表示他们在table存储的位置是相同的,也就是产生了碰撞,6、7就会在一个位置形成链表,这样就会导致查询速度降低。诚然这里只分析三个数字不是很多,那么我们就看0-15。

从上面的图表中我们看到总共发生了8此碰撞,同时发现浪费的空间非常大,有1、3、5、7、9、11、13、15处没有记录,也就是没有存放数据。这是因为他们在与14进行&运算时,得到的结果最后一位永远都是0,即0001、0011、0101、0111、1001、1011、1101、1111位置处是不可能存储数据的,空间减少,进一步增加碰撞几率,这样就会导致查询速度慢。而当length = 16时,length – 1 = 15 即1111,那么进行低位&运算时,值总是与原来hash值相同,而进行高位运算时,其值等于其低位值。所以说当length = 2^n时,不同的hash值发生碰撞的概率比较小,这样就会使得数据在table数组中分布较均匀,查询速度也较快。

这里我们再来复习put的流程:当我们想一个HashMap中添加一对key-value时,系统首先会计算key的hash值,然后根据hash值确认在table中存储的位置。若该位置没有元素,则直接插入。否则迭代该处元素链表并依此比较其key的hash值。如果两个hash值相等且key值相等(e.hash == hash && ((k = e.key) == key || key.equals(k))),则用新的Entry的value覆盖原来节点的value。如果两个hash值相等但key值不等 ,则将该节点插入该链表的链头。具体的实现过程见addEntry方法,如下:

这个方法中有两点需要注意:

一、链的产生。

这是一个非常优雅的设计。系统总是将新的Entry对象添加到bucketIndex处。如果bucketIndex处已经有了对象,那么新添加的Entry对象将指向原有的Entry对象,形成一条Entry链,但是若bucketIndex处没有Entry对象,也就是e==null,那么新添加的Entry对象指向null,也就不会产生Entry链了。

二、扩容问题。

随着HashMap中元素的数量越来越多,发生碰撞的概率就越来越大,所产生的链表长度就会越来越长,这样势必会影响HashMap的速度,为了保证HashMap的效率,系统必须要在某个临界点进行扩容处理。该临界点在当HashMap中元素的数量等于table数组长度*加载因子。但是扩容是一个非常耗时的过程,因为它需要重新计算这些数据在新table数组中的位置并进行复制处理。所以如果我们已经预知HashMap中元素的个数,那么预设元素的个数能够有效的提高HashMap的性能。

五、读取实现:get(key)

相对于HashMap的存而言,取就显得比较简单了。通过key的hash值找到在table数组中的索引处的Entry,然后返回该key对应的value即可。

在这里能够根据key快速的取到value除了和HashMap的数据结构密不可分外,还和Entry有莫大的关系,在前面就提到过,HashMap在存储过程中并没有将key,value分开来存储,而是当做一个整体key-value来处理的,这个整体就是Entry对象。同时value也只相当于key的附属而已。在存储的过程中,系统根据key的hashcode来决定Entry在table数组中的存储位置,在取的过程中同样根据key的hashcode取出相对应的Entry对象。


4.2、TreeMap

键以某种排序规则排序,内部以red-black(红-黑)树数据结构实现,实现了SortedMap接口

TreeMap的实现是红黑树算法的实现,所以要了解TreeMap就必须对红黑树有一定的了解,其实这篇博文的名字叫做:根据红黑树的算法来分析TreeMap的实现,但是为了与Java提高篇系列博文保持一致还是叫做TreeMap比较好。通过这篇博文你可以获得如下知识点:

1、红黑树的基本概念。

2、红黑树增加节点、删除节点的实现过程。

3、红黑树左旋转、右旋转的复杂过程。

4、Java 中TreeMap是如何通过put、deleteEntry两个来实现红黑树增加、删除节点的。

我想通过这篇博文你对TreeMap一定有了更深的认识。好了,下面先简单普及红黑树知识。


TeeMap详解

一、红黑树简介

红黑树又称红-黑二叉树,它首先是一颗二叉树,它具体二叉树所有的特性。同时红黑树更是一颗自平衡的排序二叉树。

我们知道一颗基本的二叉树他们都需要满足一个基本性质--即树中的任何节点的值大于它的左子节点,且小于它的右子节点。按照这个基本性质使得树的检索效率大大提高。我们知道在生成二叉树的过程是非常容易失衡的,最坏的情况就是一边倒(只有右/左子树),这样势必会导致二叉树的检索效率大大降低(O(n)),所以为了维持二叉树的平衡,大牛们提出了各种实现的算法,如:AVL,SBT,伸展树,TREAP ,红黑树等等。

平衡二叉树必须具备如下特性:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。也就是说该二叉树的任何一个等等子节点,其左右子树的高度都相近。

红黑树顾名思义就是节点是红色或者黑色的平衡二叉树,它通过颜色的约束来维持着二叉树的平衡。对于一棵有效的红黑树二叉树而言我们必须增加如下规则:

1、每个节点都只能是红色或者黑色

2、根节点是黑色

3、每个叶节点(NIL节点,空节点)是黑色的。

4、如果一个结点是红的,则它两个子节点都是黑的。也就是说在一条路径上不能出现相邻的两个红色结点。

5、从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点。

这些约束强制了红黑树的关键性质: 从根到叶子的最长的可能路径不多于最短的可能路径的两倍长。结果是这棵树大致上是平衡的。因为操作比如插入、删除和查找某个值的最坏情况时间都要求与树的高度成比例,这个在高度上的理论上限允许红黑树在最坏情况下都是高效的,而不同于普通的二叉查找树。所以红黑树它是复杂而高效的,其检索效率O(log n)。下图为一颗典型的红黑二叉树。

对于红黑二叉树而言它主要包括三大基本操作:左旋、右旋、着色。

左旋 右旋

注:由于本文主要是讲解Java中TreeMap,所以并没有对红黑树进行非常深入的了解和研究,如果诸位想对其进行更加深入的研究Lz提供几篇较好的博文:

1、红黑树系列集锦

2、红黑树数据结构剖析

3、红黑树

二、TreeMap数据结构

TreeMap的定义如下:

TreeMap继承AbstractMap,实现NavigableMap、Cloneable、Serializable三个接口。其中AbstractMap表明TreeMap为一个Map即支持key-value的集合, NavigableMap(更多)则意味着它支持一系列的导航方法,具备针对给定搜索目标返回最接近匹配项的导航方法 。

TreeMap中同时也包含了如下几个重要的属性:

对于叶子节点Entry是TreeMap的内部类,它有几个重要的属性:

注:前面只是开胃菜,下面是本篇博文的重中之重,在下面两节我将重点讲解treeMap的put()、delete()方法。通过这两个方法我们会了解红黑树增加、删除节点的核心算法。

三、TreeMap put()方法

在了解TreeMap的put()方法之前,我们先了解红黑树增加节点的算法。

红黑树增加节点

红黑树在新增节点过程中比较复杂,复杂归复杂它同样必须要依据上面提到的五点规范,同时由于规则1、2、3基本都会满足,下面我们主要讨论规则4、5。假设我们这里有一棵最简单的树,我们规定新增的节点为N、它的父节点为P、P的兄弟节点为U、P的父节点为G。

对于新节点的插入有如下三个关键地方:

1、插入新节点总是红色节点 。

2、如果插入节点的父节点是黑色, 能维持性质 。

3、如果插入节点的父节点是红色, 破坏了性质. 故插入算法就是通过重新着色或旋转, 来维持性质 。

为了保证下面的阐述更加清晰和根据便于参考,我这里将红黑树的五点规定再贴一遍:

1、每个节点都只能是红色或者黑色

2、根节点是黑色

3、每个叶节点(NIL节点,空节点)是黑色的。

4、如果一个结点是红的,则它两个子节点都是黑的。也就是说在一条路径上不能出现相邻的两个红色结点。

5、从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点。

一、为跟节点

若新插入的节点N没有父节点,则直接当做根据节点插入即可,同时将颜色设置为黑色。(如图一(1))

二、父节点为黑色

这种情况新节点N同样是直接插入,同时颜色为红色,由于根据规则四它会存在两个黑色的叶子节点,值为null。同时由于新增节点N为红色,所以通过它的子节点的路径依然会保存着相同的黑色节点数,同样满足规则5。(如图一(2))

(图一)

三、若父节点P和P的兄弟节点U都为红色

对于这种情况若直接插入肯定会出现不平衡现象。怎么处理?P、U节点变黑、G节点变红。这时由于经过节点P、U的路径都必须经过G所以在这些路径上面的黑节点数目还是相同的。但是经过上面的处理,可能G节点的父节点也是红色,这个时候我们需要将G节点当做新增节点递归处理。

四、若父节点P为红色,叔父节点U为黑色或者缺少,且新增节点N为P节点的右孩子

对于这种情况我们对新增节点N、P进行一次左旋转。这里所产生的结果其实并没有完成,还不是平衡的(违反了规则四),这是我们需要进行情况5的操作。

五、父节点P为红色,叔父节点U为黑色或者缺少,新增节点N为父节点P左孩子

这种情况有可能是由于情况四而产生的,也有可能不是。对于这种情况先已P节点为中心进行右旋转,在旋转后产生的树中,节点P是节点N、G的父节点。但是这棵树并不规范,它违反了规则4,所以我们将P、G节点的颜色进行交换,使之其满足规范。开始时所有的路径都需要经过G其他们的黑色节点数一样,但是现在所有的路径改为经过P,且P为整棵树的唯一黑色节点,所以调整后的树同样满足规范5。

上面展示了红黑树新增节点的五种情况,这五种情况涵盖了所有的新增可能,不管这棵红黑树多么复杂,都可以根据这五种情况来进行生成。下面就来分析Java中的TreeMap是如何来实现红黑树的。

TreeMap put()方法实现分析

在TreeMap的put()的实现方法中主要分为两个步骤,第一:构建排序二叉树,第二:平衡二叉树。

对于排序二叉树的创建,其添加节点的过程如下:

1、以根节点为初始节点进行检索。

2、与当前节点进行比对,若新增节点值较大,则以当前节点的右子节点作为新的当前节点。否则以当前节点的左子节点作为新的当前节点。

3、循环递归2步骤知道检索出合适的叶子节点为止。

4、将新增节点与3步骤中找到的节点进行比对,如果新增节点较大,则添加为右子节点;否则添加为左子节点。

按照这个步骤我们就可以将一个新增节点添加到排序二叉树中合适的位置。如下:

上面代码中do{}代码块是实现排序二叉树的核心算法,通过该算法我们可以确认新增节点在该树的正确位置。找到正确位置后将插入即可,这样做了其实还没有完成,因为我知道TreeMap的底层实现是红黑树,红黑树是一棵平衡排序二叉树,普通的排序二叉树可能会出现失衡的情况,所以下一步就是要进行调整。fixAfterInsertion(e); 调整的过程务必会涉及到红黑树的左旋、右旋、着色三个基本操作。代码如下:

对这段代码的研究我们发现,其处理过程完全符合红黑树新增节点的处理过程。所以在看这段代码的过程一定要对红黑树的新增节点过程有了解。在这个代码中还包含几个重要的操作。左旋(rotateLeft())、右旋(rotateRight())、着色(setColor())。

左旋:rotateLeft()

所谓左旋转,就是将新增节点(N)当做其父节点(P),将其父节点P当做新增节点(N)的左子节点。即:G.left ---> N ,N.left ---> P。

右旋:rotateRight()

所谓右旋转即,P.right ---> G、G.parent ---> P。

左旋、右旋的示意图如下:

(左旋) (右旋)

着色:setColor()

着色就是改变该节点的颜色,在红黑树中,它是依靠节点的颜色来维持平衡的。

四、TreeMap delete()方法

红黑树删除节点

针对于红黑树的增加节点而言,删除显得更加复杂,使原本就复杂的红黑树变得更加复杂。同时删除节点和增加节点一样,同样是找到删除的节点,删除之后调整红黑树。但是这里的删除节点并不是直接删除,而是通过走了“弯路”通过一种捷径来删除的:找到被删除的节点D的子节点C,用C来替代D,不是直接删除D,因为D被C替代了,直接删除C即可。所以这里就将删除父节点D的事情转变为了删除子节点C的事情,这样处理就将复杂的删除事件简单化了。子节点C的规则是:右分支最左边,或者 左分支最右边的。

红-黑二叉树删除节点,最大的麻烦是要保持 各分支黑色节点数目相等。 因为是删除,所以不用担心存在颜色冲突问题——插入才会引起颜色冲突。

红黑树删除节点同样会分成几种情况,这里是按照待删除节点有几个儿子的情况来进行分类:

1、没有儿子,即为叶结点。直接把父结点的对应儿子指针设为NULL,删除儿子结点就OK了。

2、只有一个儿子。那么把父结点的相应儿子指针指向儿子的独生子,删除儿子结点也OK了。

3、有两个儿子。这种情况比较复杂,但还是比较简单。上面提到过用子节点C替代代替待删除节点D,然后删除子节点C即可。

下面就论各种删除情况来进行图例讲解,但是在讲解之前请允许我再次啰嗦一句,请时刻牢记红黑树的5点规定:

1、每个节点都只能是红色或者黑色

2、根节点是黑色

3、每个叶节点(NIL节点,空节点)是黑色的。

4、如果一个结点是红的,则它两个子节点都是黑的。也就是说在一条路径上不能出现相邻的两个红色结点。

5、从任一节点到其每个叶子的所有路径都包含相同数目的黑色节点。

(注:已经讲三遍了,再不记住我就怀疑你是否适合搞IT了 O(∩_∩)O~)

诚然,既然删除节点比较复杂,那么在这里我们就约定一下规则:

1、下面要讲解的删除节点一定是实际要删除节点的后继节点(N),如前面提到的C。

2、下面提到的删除节点的树都是如下结构,该结构所选取的节点是待删除节点的右树的最左边子节点。这里我们规定真实删除节点为N、父节点为P、兄弟节点为W兄弟节点的两个子节点为X1、X2。如下图(2.1)。

现在我们就上面提到的三种情况进行分析、处理。

情况一、无子节点(红色节点)

这种情况对该节点直接删除即可,不会影响树的结构。因为该节点为叶子节点它不可能存在子节点-----如子节点为黑,则违反黑节点数原则(规定5),为红,则违反“颜色”原则(规定4)。 如上图(2.2)。

情况二、有一个子节点

这种情况处理也是非常简单的,用子节点替代待删除节点,然后删除子节点即可。如上图(2.3)

情况三、有两个子节点

这种情况可能会稍微有点儿复杂。它需要找到一个替代待删除节点(N)来替代它,然后删除N即可。它主要分为四种情况。

1、N的兄弟节点W为红色

2、N的兄弟w是黑色的,且w的俩个孩子都是黑色的。

3、N的兄弟w是黑色的,w的左孩子是红色,w的右孩子是黑色。

4、N的兄弟w是黑色的,且w的右孩子时红色的。

情况3.1、N的兄弟节点W为红色

W为红色,那么其子节点X1、X2必定全部为黑色,父节点P也为黑色。处理策略是:改变W、P的颜色,然后进行一次左旋转。这样处理就可以使得红黑性质得以继续保持。N的新兄弟new w是旋转之前w的某个孩子,为黑色。这样处理后将情况3.1、转变为3.2、3.3、3.4中的一种。如下:

情况3.2、N的兄弟w是黑色的,且w的俩个孩子都是黑色的。

这种情况其父节点可红可黑,由于W为黑色,这样导致N子树相对于其兄弟W子树少一个黑色节点,这时我们可以将W置为红色。这样,N子树与W子树黑色节点一致,保持了平衡。如下

将W由黑转变为红,这样就会导致新节点new N相对于它的兄弟节点会少一个黑色节点。但是如果new x为红色,我们直接将new x转变为黑色,保持整棵树的平衡。否则情况3.2 会转变为情况3.1、3.3、3.4中的一种。

情况3.3、N的兄弟w是黑色的,w的左孩子是红色,w的右孩子是黑色。

针对这种情况是将节点W和其左子节点进行颜色交换,然后对W进行右旋转处理。

此时N的新兄弟X1(new w)是一个有红色右孩子的黑结点,于是将情况3转化为情况4.

情况3.4、N的兄弟w是黑色的,且w的右孩子时红色的。

交换W和父节点P的颜色,同时对P进行左旋转操作。这样就把左边缺失的黑色节点给补回来了。同时将W的右子节点X2置黑。这样左右都达到了平衡。

总结

个人认为这四种情况比较难理解,首先他们都不是单一的某种情况,他们之间是可以进行互转的。相对于其他的几种情况,情况3.2比较好理解,仅仅只是一个颜色的转变,通过减少右子树的一个黑色节点使之保持平衡,同时将不平衡点上移至N与W的父节点,然后进行下一轮迭代。情况3.1,是将W旋转将其转成情况2、3、4情况进行处理。而情况3.3通过转变后可以化成情况3.4来进行处理,从这里可以看出情况3.4应该最终结。情况3.4、右子节点为红色节点,那么将缺失的黑色节点交由给右子节点,通过旋转达到平衡。

通过上面的分析,我们已经初步了解了红黑树的删除节点情况,相对于增加节点而言它确实是选的较为复杂。下面我将看到在Java TreeMap中是如何实现红黑树删除的。

TreeMap deleteEntry()方法实现分析

通过上面的分析我们确认删除节点的步骤是:找到一个替代子节点C来替代P,然后直接删除C,最后调整这棵红黑树。下面代码是寻找替代节点、删除替代节点。

(1)除是寻找替代节点replacement,其实现方法为successor()。如下:

(2)处是删除该节点过程。它主要分为上面提到的三种情况,它与上面的if…else if… else一一对应 。如下:

1、有两个儿子。这种情况比较复杂,但还是比较简单。上面提到过用子节点C替代代替待删除节点D,然后删除子节点C即可。

2、没有儿子,即为叶结点。直接把父结点的对应儿子指针设为NULL,删除儿子结点就OK了。

3、只有一个儿子。那么把父结点的相应儿子指针指向儿子的独生子,删除儿子结点也OK了。

删除完节点后,就要根据情况来对红黑树进行复杂的调整:fixAfterDeletion()。

这是红黑树在删除节点后,对树的平衡性进行调整的过程,其实现过程与上面四种复杂的情况一一对应,所以在这个源码的时候一定要对着上面提到的四种情况看。


4.3、HashTable

也是以哈希表数据结构实现的,解决冲突时与HashMap也一样也是采用了散列链表的形式,不过性能比HashMap要低


HashTable详解

有两个类都提供了一个多种用途的hashTable机制,他们都可以将可以key和value结合起来构成键值对通过put(key,value)方法保存起来,然后通过get(key)方法获取相对应的value值。一个是前面提到的HashMap,还有一个就是马上要讲解的HashTable。对于HashTable而言,它在很大程度上和HashMap的实现差不多,如果我们对HashMap比较了解的话,对HashTable的认知会提高很大的帮助。他们两者之间只存在几点的不同,这个后面会阐述。

一、定义

HashTable在Java中的定义如下:

从中可以看出HashTable继承Dictionary类,实现Map接口。其中Dictionary类是任何可将键映射到相应值的类(如 Hashtable)的抽象父类。每个键和每个值都是一个对象。在任何一个 Dictionary 对象中,每个键至多与一个值相关联。Map是"key-value键值对"接口。

HashTable采用"拉链法"实现哈希表,它定义了几个重要的参数:table、count、threshold、loadFactor、modCount。

table:为一个Entry[]数组类型,Entry代表了“拉链”的节点,每一个Entry代表了一个键值对,哈希表的"key-value键值对"都是存储在Entry数组中的。

count:HashTable的大小,注意这个大小并不是HashTable的容器大小,而是他所包含Entry键值对的数量。

threshold:Hashtable的阈值,用于判断是否需要调整Hashtable的容量。threshold的值="容量*加载因子"。

loadFactor:加载因子。

modCount:用来实现“fail-fast”机制的(也就是快速失败)。所谓快速失败就是在并发集合中,其进行迭代操作时,若有其他线程对其进行结构性的修改,这时迭代器会立马感知到,并且立即抛出ConcurrentModificationException异常,而不是等到迭代完成之后才告诉你(你已经出错了)。

二、构造方法

在HashTabel中存在5个构造函数。通过这5个构造函数我们构建出一个我想要的HashTable。

默认构造函数,容量为11,加载因子为0.75。

用指定初始容量和默认的加载因子 (0.75) 构造一个新的空哈希表。

用指定初始容量和指定加载因子构造一个新的空哈希表。其中initHashSeedAsNeeded方法用于初始化hashSeed参数,其中hashSeed用于计算key的hash值,它与key的hashCode进行按位异或运算。这个hashSeed是一个与实例相关的随机值,主要用于解决hash冲突。

构造一个与给定的 Map 具有相同映射关系的新哈希表。

三、主要方法

HashTable的API对外提供了许多方法,这些方法能够很好帮助我们操作HashTable,但是这里我只介绍两个最根本的方法:put、get。

首先我们先看put方法:将指定 key 映射到此哈希表中的指定 value。注意这里键key和值value都不可为空。

put方法的整个处理流程是:计算key的hash值,根据hash值获得key在table数组中的索引位置,然后迭代该key处的Entry链表(我们暂且理解为链表),若该链表中存在一个这个的key对象,那么就直接替换其value值即可,否则在将改key-value节点插入该index索引位置处。如下:

首先我们假设一个容量为5的table,存在8、10、13、16、17、21。他们在table中位置如下:

然后我们插入一个数:put(16,22),key=16在table的索引位置为1,同时在1索引位置有两个数,程序对该“链表”进行迭代,发现存在一个key=16,这时要做的工作就是用newValue=22替换oldValue16,并将oldValue=16返回。

在put(33,33),key=33所在的索引位置为3,并且在该链表中也没有存在某个key=33的节点,所以就将该节点插入该链表的第一个位置。

在HashTabled的put方法中有两个地方需要注意:

1、HashTable的扩容操作,在put方法中,如果需要向table[]中添加Entry元素,会首先进行容量校验,如果容量已经达到了阀值,HashTable就会进行扩容处理rehash(),如下:

在这个rehash()方法中我们可以看到容量扩大两倍+1,同时需要将原来HashTable中的元素一一复制到新的HashTable中,这个过程是比较消耗时间的,同时还需要重新计算hashSeed的,毕竟容量已经变了。这里对阀值啰嗦一下:比如初始值11、加载因子默认0.75,那么这个时候阀值threshold=8,当容器中的元素达到8时,HashTable进行一次扩容操作,容量 = 8 * 2 + 1 =17,而阀值threshold=17*0.75 = 13,当容器元素再一次达到阀值时,HashTable还会进行扩容操作,一次类推。

下面是计算key的hash值,这里hashSeed发挥了作用。

相对于put方法,get方法就会比较简单,处理过程就是计算key的hash值,判断在table数组中的索引位置,然后迭代链表,匹配直到找到相对应key的value,若没有找到返回null。

四、HashTable与HashMap的区别

HashTable和HashMap存在很多的相同点,但是他们还是有几个比较重要的不同点。

第一:我们从他们的定义就可以看出他们的不同,HashTable基于Dictionary类,而HashMap是基于AbstractMap。Dictionary是什么?它是任何可将键映射到相应值的类的抽象父类,而AbstractMap是基于Map接口的骨干实现,它以最大限度地减少实现此接口所需的工作。

第二:HashMap可以允许存在一个为null的key和任意个为null的value,但是HashTable中的key和value都不允许为null。如下:

当HashMap遇到为null的key时,它会调用putForNullKey方法来进行处理。对于value没有进行任何处理,只要是对象都可以。

而当HashTable遇到null时,他会直接抛出NullPointerException异常信息。

第三:Hashtable的方法是同步的,而HashMap的方法不是。所以有人一般都建议如果是涉及到多线程同步时采用HashTable,没有涉及就采用HashMap,但是在Collections类中存在一个静态方法:synchronizedMap(),该方法创建了一个线程安全的Map对象,并把它作为一个封装的对象来返回,所以通过Collections类的synchronizedMap方法是可以同步访问潜在的HashMap。

五、Queue

队列,它主要分为两大类,一类是阻塞式队列,队列满了以后再插入元素则会抛出异常,主要包括ArrayBlockQueue、PriorityBlockingQueue、LinkedBlockingQueue。另一种队列则是双端队列,支持在头、尾两端插入和移除元素,主要包括:ArrayDeque、LinkedBlockingDeque、LinkedList。

六、异同点

6.1、Vector和ArrayList

1,vector是线程同步的,所以它也是线程安全的,而arraylist是线程异步的,是不安全的。如果不考虑到线程的安全因素,一般用arraylist效率比较高。 2,如果集合中的元素的数目大于目前集合数组的长度时,vector增长率为目前数组长度的100%,而arraylist增长率为目前数组长度的50%.如过在集合中使用数据量比较大的数据,用vector有一定的优势。 3,如果查找一个指定位置的数据,vector和arraylist使用的时间是相同的,都是0(1),这个时候使用vector和arraylist都可以。而如果移动一个指定位置的数据花费的时间为0(n-i)n为总长度,这个时候就应该考虑到使用linklist,因为它移动一个指定位置的数据所花费的时间为0(1),而查询一个指定位置的数据时花费的时间为0(i)。

ArrayList 和Vector是采用数组方式存储数据,此数组元素数大于实际存储的数据以便增加和插入元素,都允许直接序号索引元素,但是插入数据要设计到数组元素移动等内存操作,所以索引数据快插入数据慢,Vector由于使用了synchronized方法(线程安全)所以性能上比ArrayList要差,LinkedList使用双向链表实现存储,按序号索引数据需要进行向前或向后遍历,但是插入数据时只需要记录本项的前后项即可,所以插入数度较快!

6.2、Aarraylist和Linkedlist

1.ArrayList是实现了基于动态数组的数据结构,LinkedList基于链表的数据结构。 2.对于随机访问get和set,ArrayList觉得优于LinkedList,因为LinkedList要移动指针。 3.对于新增和删除操作add和remove,LinedList比较占优势,因为ArrayList要移动数据。 这一点要看实际情况的。若只对单条数据插入或删除,ArrayList的速度反而优于LinkedList。但若是批量随机的插入删除数据,LinkedList的速度大大优于ArrayList. 因为ArrayList每插入一条数据,要移动插入点及之后的所有数据。

6.3、HashMap与TreeMap

1、HashMap通过hashcode对其内容进行快速查找,而TreeMap中所有的元素都保持着某种固定的顺序,如果你需要得到一个有序的结果你就应该使用TreeMap(HashMap中元素的排列顺序是不固定的)。HashMap中元素的排列顺序是不固定的)。

2、 HashMap通过hashcode对其内容进行快速查找,而TreeMap中所有的元素都保持着某种固定的顺序,如果你需要得到一个有序的结果你就应该使用TreeMap(HashMap中元素的排列顺序是不固定的)。集合框架”提供两种常规的Map实现:HashMap和TreeMap (TreeMap实现SortedMap接口)。

3、在Map 中插入、删除和定位元素,HashMap 是最好的选择。但如果您要按自然顺序或自定义顺序遍历键,那么TreeMap会更好。使用HashMap要求添加的键类明确定义了hashCode()和 equals()的实现。 这个TreeMap没有调优选项,因为该树总处于平衡状态。

6.4、hashtable与hashmap

1、历史原因:Hashtable是基于陈旧的Dictionary类的,HashMap是Java 1.2引进的Map接口的一个实现 。

2、同步性:Hashtable是线程安全的,也就是说是同步的,而HashMap是线程序不安全的,不是同步的 。

3、值:只有HashMap可以让你将空值作为一个表的条目的key或value 。

七、对集合的选择

7.1、对List的选择

1、对于随机查询与迭代遍历操作,数组比所有的容器都要快。所以在随机访问中一般使用ArrayList

2、LinkedList使用双向链表对元素的增加和删除提供了非常好的支持,而ArrayList执行增加和删除元素需要进行元素位移。

3、对于Vector而已,我们一般都是避免使用。

4、将ArrayList当做首选,毕竟对于集合元素而已我们都是进行遍历,只有当程序的性能因为List的频繁插入和删除而降低时,再考虑LinkedList。

7.2、对Set的选择

1、HashSet由于使用HashCode实现,所以在某种程度上来说它的性能永远比TreeSet要好,尤其是进行增加和查找操作。

3、虽然TreeSet没有HashSet性能好,但是由于它可以维持元素的排序,所以它还是存在用武之地的。

7.3、对Map的选择

1、HashMap与HashSet同样,支持快速查询。虽然HashTable速度的速度也不慢,但是在HashMap面前还是稍微慢了些,所以HashMap在查询方面可以取代HashTable。

2、由于TreeMap需要维持内部元素的顺序,所以它通常要比HashMap和HashTable慢。


Map集合总结

一、Map概述

首先先看Map的结构示意图

Map:“键值”对映射的抽象接口。该映射不包括重复的键,一个键对应一个值。

SortedMap:有序的键值对接口,继承Map接口。

NavigableMap:继承SortedMap,具有了针对给定搜索目标返回最接近匹配项的导航方法的接口。

AbstractMap:实现了Map中的绝大部分函数接口。它减少了“Map的实现类”的重复编码。

Dictionary:任何可将键映射到相应值的类的抽象父类。目前被Map接口取代。

TreeMap:有序散列表,实现SortedMap 接口,底层通过红黑树实现。

HashMap:是基于“拉链法”实现的散列表。底层采用“数组+链表”实现。

WeakHashMap:基于“拉链法”实现的散列表。

HashTable:基于“拉链法”实现的散列表。

总结如下:

他们之间的区别:

二、内部哈希: 哈希映射技术

几乎所有通用Map都使用哈希映射技术。对于我们程序员来说我们必须要对其有所了解。

哈希映射技术是一种就元素映射到数组的非常简单的技术。由于哈希映射采用的是数组结果,那么必然存在一中用于确定任意键访问数组的索引机制,该机制能够提供一个小于数组大小的整数,我们将该机制称之为哈希函数。在Java中我们不必为寻找这样的整数而大伤脑筋,因为每个对象都必定存在一个返回整数值的hashCode方法,而我们需要做的就是将其转换为整数,然后再将该值除以数组大小取余即可。如下:

下面是HashMap、HashTable的:

位置的索引就代表了该节点在数组中的位置。下图是哈希映射的基本原理图:

在该图中1-4步骤是找到该元素在数组中位置,5-8步骤是将该元素插入数组中。在插入的过程中会遇到一点点小挫折。在众多肯能存在多个元素他们的hash值是一样的,这样就会得到相同的索引位置,也就说多个元素会映射到相同的位置,这个过程我们称之为“冲突”。解决冲突的办法就是在索引位置处插入一个链接列表,并简单地将元素添加到此链接列表。当然也不是简单的插入,在HashMap中的处理过程如下:获取索引位置的链表,如果该链表为null,则将该元素直接插入,否则通过比较是否存在与该key相同的key,若存在则覆盖原来key的value并返回旧值,否则将该元素保存在链头(最先保存的元素放在链尾)。下面是HashMap的put方法,该方法详细展示了计算索引位置,将元素插入到适当的位置的全部过程:

HashMap的put方法展示了哈希映射的基本思想,其实如果我们查看其它的Map,发现其原理都差不多!

三、Map优化

首先我们这样假设,假设哈希映射的内部数组的大小只有1,所有的元素都将映射该位置(0),从而构成一条较长的链表。由于我们更新、访问都要对这条链表进行线性搜索,这样势必会降低效率。我们假设,如果存在一个非常大数组,每个位置链表处都只有一个元素,在进行访问时计算其 index 值就会获得该对象,这样做虽然会提高我们搜索的效率,但是它浪费了控件。诚然,虽然这两种方式都是极端的,但是它给我们提供了一种优化思路:使用一个较大的数组让元素能够均匀分布。在Map有两个会影响到其效率,一是容器的初始化大小、二是负载因子。

3.1、调整实现大小

在哈希映射表中,内部数组中的每个位置称作“存储桶”(bucket),而可用的存储桶数(即内部数组的大小)称作容量 (capacity),我们为了使Map对象能够有效地处理任意数的元素,将Map设计成可以调整自身的大小。我们知道当Map中的元素达到一定量的时候就会调整容器自身的大小,但是这个调整大小的过程其开销是非常大的。调整大小需要将原来所有的元素插入到新数组中。我们知道index = hash(key) % length。这样可能会导致原先冲突的键不在冲突,不冲突的键现在冲突的,重新计算、调整、插入的过程开销是非常大的,效率也比较低下。所以,如果我们开始知道Map的预期大小值,将Map调整的足够大,则可以大大减少甚至不需要重新调整大小,这很有可能会提高速度。下面是HashMap调整容器大小的过程,通过下面的代码我们可以看到其扩容过程的复杂性:

3.2、负载因子

为了确认何时需要调整Map容器,Map使用了一个额外的参数并且粗略计算存储容器的密度。在Map调整大小之前,使用”负载因子”来指示Map将会承担的“负载量”,也就是它的负载程度,当容器中元素的数量达到了这个“负载量”,则Map将会进行扩容操作。负载因子、容量、Map大小之间的关系如下:负载因子 * 容量 > map大小 ----->调整Map大小。

例如:如果负载因子大小为0.75(HashMap的默认值),默认容量为11,则 11 * 0.75 = 8.25 = 8,所以当我们容器中插入第八个元素的时候,Map就会调整大小。

负载因子本身就是在控件和时间之间的折衷。当我使用较小的负载因子时,虽然降低了冲突的可能性,使得单个链表的长度减小了,加快了访问和更新的速度,但是它占用了更多的控件,使得数组中的大部分控件没有得到利用,元素分布比较稀疏,同时由于Map频繁的调整大小,可能会降低性能。但是如果负载因子过大,会使得元素分布比较紧凑,导致产生冲突的可能性加大,从而访问、更新速度较慢。所以我们一般推荐不更改负载因子的值,采用默认值0.75.

原文发布于微信公众号 - Java帮帮(javahelp)

原文发表时间:2018-02-14

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏窗户

Scheme来实现八皇后问题(2)

  上一章讲了用1~n的排序来表示n皇后的解,然后通过枚举1~n所有的排列、判定谓词过滤所有排列得到最终的所有解。

1323
来自专栏Crossin的编程教室

【编程课堂】震惊!小 bug 引发大灾难,0.1 + 0.2 的结果竟然是……

各位观众点进标题看文章的时候,我已经准备打包行李去UC报道啦~ 冷笑话结束,嗯,说正事。 请大家思考一下在 python 控制台输入 0.1 + 0.2 ==...

2849
来自专栏Java爬坑系列

【Java入门提高篇】Day22 Java容器类详解(五)HashMap源码分析(上)

准备了很长时间,终于理清了思路,鼓起勇气,开始介绍本篇的主角——HashMap。说实话,这家伙能说的内容太多了,要是像前面ArrayList那样翻译一下源码,稍...

2395
来自专栏小文博客

小文’s blog — 方程整数解 –《蓝桥杯代码笔记1》

1042
来自专栏我是东东强

数据结构之栈与队列(优先队列/堆)

栈与队列是两种重要的特殊线性表,从结构上讲,两者都是线性表,但从操作上讲,两者支持的基本操作却只是线性表操作的子集,是操作受限制的线性表。栈与队列两者最大的区别...

1252
来自专栏工科狗和生物喵

【编程能力不行?那就写啊!】二叉索引树

本文直接借鉴下面的博客进行补充: 区间信息的维护与查询(一)——二叉索引树(Fenwick树、树状数组)

1236
来自专栏美团技术团队

Java8系列之重新认识HashMap

摘要 HashMap是Java程序员使用频率最高的用于映射(键值对)处理的数据类型。随着JDK(Java Developmet Kit)版本的更新,JDK1.8...

4245
来自专栏和蔼的张星的图像处理专栏

69. 二叉树的层次遍历层次遍历+queue

给出一棵二叉树,返回其节点值的层次遍历(逐层从左往右访问) 样例 给一棵二叉树 {3,9,20,#,#,15,7} :

2344
来自专栏小樱的经验随笔

HUST 1541 Student’s question

1541 - Student’s question 时间限制:1秒 内存限制:128兆 696 次提交 134 次通过 题目描述 YYis a stude...

3478
来自专栏陈树义

如何检测链表中存在的环

链表有环的定义是,链表的尾节点指向了链接中间的某个节点。比如下图,如果单链表有环,则在遍历时,在通过结点J之后,会重新回到结点D。 ? 看了上面的定义之后,如...

2866

扫码关注云+社区