【专业技术】图像格式转化规律探秘

存在问题:

搞视频编解码的童鞋对此深刻理解,但是好多小伙伴在andriod或其他嵌入上做启动动画时候图像是如何转化存在一定的疑惑。

解决方案:

针对这些问题我们来简单了解了解。

在视频等相关的应用中,YUV是一个经常出现的格式。本文主要以图解的资料的形式详细描述YUV和RGB格式的来由,相互关系以及转换方式,并对C语言实现的YUV转为RGB程序进行介绍。

人类眼睛的色觉,具有特殊的特性,早在上世纪初,Young(1809)和 Helmholtz(1824)就提出了视觉的三原色学说,即:视网膜存在三种视锥细胞,分别含有对红、绿、蓝三种光线敏感的视色素,当一定波长的光线作 用于视网膜时,以一定的比例使三种视锥细胞分别产生不同程度的兴奋,这样的信息传至中枢,就产生某一种颜色的感觉。

70年代以来,由于实验技术的进步,关于视网膜中有三种对不同波长光线特别敏感的视锥细胞的假说,已经 被许多出色的实验所证实。 例如:①有人用不超过单个视锥直径的细小单色光束,逐个检查并绘制在体(最初实验是在金鱼和蝾螈等动物进行,以后是人)视锥细胞的光谱吸收曲线,发现所有 绘制出来的曲线不外三种类型,分别代表了三类光谱吸收特性不同的视锥细胞,一类的吸收峰值在420nm处,一类在534nm处,一类在564nm处,差不 多正好相当于蓝、绿、红三色光的波长。与上述视觉三原色学说的假设相符。②用微电极记录单个视锥细胞感受器电位的方法,也得到了类似的结果,即不同单色光 所引起的不同视锥细胞的超极化型感受器电位的大小也不同,峰值出现的情况符合于三原色学说。

于是,在彩色显示器还没有发明的时候,人类已经懂得使用三原色光调配出所有颜色的光。并不是说三原色混合后产生了新的频率的光,而是给人眼睛的感觉是这样。

在显示器发明之后,从黑白显示器发展到彩色显示器,人们开始使用发出不同颜色的光的荧光粉(CRT,等离子体显示器),或者不同颜色的滤色片(LCD), 或者不同颜色的半导体发光器件(OLED和LED大型全彩显示牌)来形成色彩,无一例外的选择了Red,Green,Blue这3种颜色的发光体作为基本 的发光单元。通过控制他们发光强度,组合出了人眼睛能够感受到的大多数的自然色彩。

计算机显示彩色图像的时候也不例外,最终显示的时候,要控制一个像素中Red,Green,Blue的值,来确定这个像素的颜色。计算机中无法模拟连续的 存储从最暗到最亮的量值,而只能以数字的方式表示。于是,结合人眼睛的敏感程度,使用3个字节(3*8位)来分别表示一个像素里面的Red,Green和 Blue的发光强度数值,这就是常见的RGB格式。我们可以打开画图板,在自定义颜色工具框中,输入r,g,b值,得到不同的颜色。

但是对于视频捕获和编解码等应用来讲,这样的表示方式数据量太大了。需要想办法在不太影响感觉的情况下,对原始数据的表示方法进行更改,减少数据量。

无论中间处理过程怎样,最终都是为了展示给人观看,这样的更改,也是从人眼睛的特性出发,和发明RGB三原色表示方法的出发点是一样的。

于是我们使用Y,Cb,Cr模型来表示颜色。Iain的书中写道:The human visual system (HVS) is less sensitive to colour than to luminance (brightness).人类视觉系统(其实就是人的眼睛)对亮度的感觉比对颜色更加敏感。

在RGB色彩空间中,三个颜色的重要程度相同,所以需要使用相同的分辨率进行存储,最多使用RGB565这样的形式减少量化的精度,但是3个颜色需要按照 相同的分辨率进行存储,数据量还是很大的。所以,利用人眼睛对亮度比对颜色更加敏感,将图像的亮度信息和颜色信息分离,并使用不同的分辨率进行存储,这样 可以在对主观感觉影响很小的前提下,更加有效的存储图像数据。

YCbCr色彩空间和它的变形(有时被称为YUV)是最常用的有效的表示彩色图像的方法。Y是图像的亮度(luminance/luma)分量,使用以下公式计算,为R,G,B分量的加权平均值:

Y = kr R + kgG + kbB

其中k是权重因数。

上面的公式计算出了亮度信息,还有颜色信息,使用色差(color difference/chrominance或chroma)来表示,其中每个色差分量为R,G,B值和亮度Y的差值:

  Cb = B - Y

  Cr = R - Y

Cg = G - Y

其中,Cb+Cr+Cg是一个常数(其实是一个关于Y的表达式),所以,只需要其中两个数值结合Y值就能够计算出原来的RGB值。所以,我们仅保存亮度和蓝色、红色的色差值,这就是(Y,Cb,Cr)。

相比RGB色彩空间,YCbCr色彩空间有一个显著的优点。Y的存储可以采用和原来画面一样的分辨率,但是Cb,Cr的存储可以使用更低的分辨率。这样可 以占用更少的数据量,并且在图像质量上没有明显的下降。所以,将色彩信息以低于量度信息的分辨率来保存是一个简单有效的图像压缩方法。

在COLOUR SPACES .17 ITU-R recommendation BT.601 中,建议在计算Y时,权重选择为kr=0.299,kg=0.587,kb=0.114。于是常用的转换公式如下:

Y= 0.299R + 0.587G + 0.114B

Cb = 0.564(B - Y )

Cr = 0.713(R - Y )

R = Y + 1.402Cr

G = Y - 0.344Cb - 0.714Cr

B = Y + 1.772Cb

有了这个公式,我们就能够将一幅RGB画面转换成为YUV画面了,反过来也可以。下面将画面数据究竟是以什么形式存储起来的。

在RGB24格式中,对于宽度为w,高度为h的画面,需要w*h*3个字节来存储其每个像素的rgb信息,画面的像素数据是连续排列的。按照 r(0,0),g(0,0),b(0,0);r(0,1),g(0,1),b(0,1);…;r(w-1,0),g(w-1,0),b(w- 1,0);…;r(w-1,h-1),g(w-1,h-1),b(w-1,h-1)这样的顺序存放起来。

在YUV格式中,以YUV420格式为例。宽度为w高度为h的画面,其亮度Y数据需要w*h个字节来表示(每个像素点一个亮度)。而Cb和Cr数据则是画面中4个像素共享一个Cb,Cr值。这样Cb用w*h/4个字节,Cr用w*h/4个字节。

YUV文件中,把多个帧的画面连续存放。就是YUV YUV YUV…..这样的不断连续的形式,而其中每个YUV,就是一幅画面。

在这单个YUV中,前w*h个字节是Y数据,接着的w*h/4个字节是Cb数据,再接着的w*h/4个字节为Cr数据。

在由这样降低了分辨率的数据还原出RGB数据的时候,就要依据像素的位置找到它对应的Y,Cb,Cr值,其中Y值最好找到,像素位置为x,y的话,Y数据 中第y*width+x个数值就是它的Y值。Cb和Cr由于是每2x2像素的画面块拥有一个,这样Cb和Cr数据相当于两个分辨率为w/2 * h/2的画面,那么原来画面中的位置为x,y的像素,在这样的低分辨率画面中的位置是x/2,y/2,属于它的Cb,Cr值就在这个地方:(y/2)* (width/2)+(x/2)。

为了直观起见,在下面的图中,分别将Y画面(Cb,Cr=0)和Cb,Cr画面(Y=128)显示出来,可见Cb,Cr画面的分辨率是Y画面的1/4。但是合成一个画面之后,我们的眼睛丝毫感觉不到4个像素是共用一个Cb,Cr的。

Y画面

Cb,Cr画面

将Cb,Cr画面放大观察,里面颜色相同的块都是2x2大小的。

附件为Windows Mobile上使用公式进行YUV到RGB转换的程序。其中需要注意的是Cb,Cr在计算过程中是会出现负数的,但是从-128到127这些数值都用一个 字节表示,读取的时候就映射0到255这个区间,成为了无符号的值,所以要减去128,才能参与公式计算。这样的运算有浮点运算,效率是比较低的,所以要 提高效率的话,一般在实用程序中使用整数计算或者查表法来代替。还有,运算后的r,g,b可能会超过0-255的区间,作一个判断进行调整就可以了。

本文转自:http://blog.sina.com.cn/s/blog_3f7c4db40100su2b.html

原文发布于微信公众号 - 程序员互动联盟(coder_online)

原文发表时间:2015-12-17

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏AI科技评论

开发 | Kaggle机器学习之模型融合(stacking)心得

此文道出了本人学习Stacking入门级应用的心路历程。 在学习过程中感谢@贝尔塔的模型融合方法(https://zhuanlan.zhihu.com/p/25...

59913
来自专栏我的技术专栏

[CG编程] 基本光照模型的实现与拓展以及常见光照模型解析

2112
来自专栏ArrayZoneYour的专栏

TensorFlow强化学习入门(5)—— 可视化Agent的“所思所想”

在我的强化学习系列的文章中,我想要深入探究我们基于神经网络的agent在训练过程中习得的表达形式。尽管我们的直接目的是希望我们的agent能够获得更高的分数,或...

7324
来自专栏一名叫大蕉的程序员

社区发现有啥鸟用No.14

当当当,同学们说要听算法,那今天就说说算法,关于社区发现的一系列算法。 最近一段时间工作上使用到了社区发现,虽然只是小小一部分。但是呢,工作量还是不小的,在网上...

5547
来自专栏量子位

苹果推出高精度手写识别系统,可准确识别3万字符集

安妮 编译自 苹果机器学习博客 量子位 出品 | 公众号 QbitAI 在手机、平板和可穿戴设备不断普及的今天,手写识别比以往任何时候都重要。但这并非易事,拿汉...

5787
来自专栏北京马哥教育

Python机器学习工具包

? 作者 | 空木 来源 | CSDN社区 Python在科学计算领域,有两个重要的扩展模块:Numpy和Scipy。其中Numpy是一个用pytho...

61513
来自专栏新智元

重磅 | 经典教材 R. Sutton《增强学习导论》最新版(548PDF)

3862
来自专栏积累沉淀

数据挖掘算法之贝叶斯网络

贝叶斯网络 序 上上周末写完上篇朴素贝叶斯分类后,连着上了七天班,而且有四天都是晚上九点下班,一直没有多少时间学习贝叶斯网络,所以更新慢了点,利用清明节两天假期...

1.1K10
来自专栏数据科学与人工智能

【数据】数据预处理

小编邀请您,先思考: 1 数据预处理包括哪些内容? 2 如何有效完成数据预处理? 数据的质量和包含的有用信息量是决定一个机器学习算法能够学多好的关键因素。因此,...

3898
来自专栏数据小魔方

图表案例——网易数独经典图表仿作

大家平时看新闻的时候是不是都喜欢看那种多图少字、图文并茂的呀,冗长的文字看着烦死了,还累眼睛(躺枪的举手我看看~_~) 哈哈其实这很正常,白天累死累活干一天,看...

4514

扫码关注云+社区

领取腾讯云代金券