前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >优化算法——OWL-QN

优化算法——OWL-QN

作者头像
felixzhao
发布2018-03-19 16:32:57
1.6K0
发布2018-03-19 16:32:57
举报
文章被收录于专栏:null的专栏

一、正则化(Regularization)

1、正则化的作用

    在机器学习中,正则化是相对于过拟合出现的一种特征选择的方法。在机器学习算法中使用的Loss项为最小化误差,而最小化误差是为了让我们的模型拟合我们的训练数据,此时,若参数过分拟合我们的训练数据就会形成过拟合的问题,而规则化参数的目的就是为看防止我们的模型过分拟合我们的训练数据。此时,我们会在Loss项之后加上正则项以约束模型中的参数:

其中,

为损失函数项,

为正则项。

2、正则化的种类

    正则化的方法主要有两种:

  1. L1正则
  2. L2正则

其中,L1正则和L2正则的形式如下:

  1. L1正则:
  1. L2正则:

其中,

为大于0的常数。

3、两种正则化的区别

    在很多讲解正则化的材料中都会有如下的一张图

(图片来自:http://www.zhihu.com/question/20700829)

左图是L2正则,右图为L1正则。当模型中只有两个参数,即

时,L2正则的约束空间是一个圆,而L1正则的约束空间为一个正方形,这样,基于L1正则的约束会产生稀疏解,如图所示,即图中某一维(

)为0。而L2正则只是将参数约束在接近0的很小的区间里,而不会正好为0。对于L1正则产生的稀疏解有很多的好处,如可以起到特征选择的作用,因为有些维的系数为0,说明这些维对于模型的作用很小。

二、OWL-QN算法的思想

1、L1正则的特点

    对于带有L1正则的函数

对于

,若其符号确定后(即确定变量所在的象限(Orthant)),函数

即为线性函数,此时的函数是可导的函数。

2、OWL-QN算法的思想

   基于以上L1正则的特点,微软提出了OWL-QN(Orthant-Wise Limited-Memory Quasi-Newton)算法,该算法是基于L-BFGS算法的可用于求解L1正则的算法。简单来讲,OWL-QN算法是指假定变量

的象限确定的条件下使用L-BFGS算法来更新,同时,使得更新前后变量在同一个象限中(使用映射来满足条件)。

三、OWL-QN算法的具体过程

在OWL-QN算法中,为了使得更新前后的变量在同一个象限中,定义了一些特殊的函数,用于求解L1正则的问题。

1、伪梯度(pseudo-gradient)

2、映射  

3、线搜索

4、算法流程

参考文献

[1] Scalable Training of L1-Regularized Log-Linear Models

本文参与 腾讯云自媒体同步曝光计划,分享自作者个人站点/博客。
如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 一、正则化(Regularization)
    • 1、正则化的作用
      • 2、正则化的种类
        • 3、两种正则化的区别
        • 二、OWL-QN算法的思想
          • 1、L1正则的特点
            • 2、OWL-QN算法的思想
            • 三、OWL-QN算法的具体过程
              • 1、伪梯度(pseudo-gradient)
                • 2、映射  
                  • 3、线搜索
                    • 4、算法流程
                    领券
                    问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档