引导图滤波(Guided Image Filtering)原理以及OpenCV实现

引导图滤波器是一种自适应权重滤波器,能够在平滑图像的同时起到保持边界的作用,具体公式推导请查阅原文献《Guided Image Filtering》以及matlab源码:http://kaiminghe.com/eccv10/index.html。这里只说一下自适应权重原理、C++实现灰度图像以及彩色图像的引导图滤波、验证结果。

  • 自适应权重原理 引导图滤波作为一种线性滤波器,可以简单定义为如下形式:

其中I是引导图像(guided Image),P是输入的待滤波图像,Q是滤波后的输出图像,W是根据引导图I确定的权重值。权重值W可以用下式表示(原文献有详细推导):

        μk是窗口内像素点的均值,Ii和Ij指相邻两个像素点的值,σk代表窗口内像素点的方差,ε是一个惩罚值。自适应权重可以根据上式分析得到:Ii和Ij在边界两侧时,(Ii-μk)和(Ij-μk)异号,否则,则同号。而异号时的权重值将远远小于同号时的权重值,这样处于平坦区域的像素则会被加以较大的权重,平滑效果效果更明显,而处于边界两侧的像素则会被加以较小的权重,平滑效果较弱,能够起到保持边界的效果。       惩罚值ε对滤波效果影响也很大,当ε值很小时,滤波如前面所述;当ε值很大时,权重的计算公式将近似为一个均值滤波器,平滑效果会更明显。

同样也可以根据线性滤波公式来看引导图滤波的自适应权重原理,局部线性滤波模型公式如下:

      I指引导图像,Q是输出图像,ak和bk两个系数根据引导图I和输入图像P共同决定。将上式两边求梯度,可以得到▽q=a*▽I,即输出图像的梯度信息完全由引导图像的梯度信息决定,当引导图中有边界时,输出图像中对应位置也会有边界。而a和b的值将会决定梯度信息和平滑信息的权重大小。       通过观察a和b的公式,a的分子为I和P的协方差,分母部分为I的方差加上截断值ε;b的值为P的均值减去a乘以I的均值。可以看出当a值很小时,b约等于窗口内像素点的均值pk,近似于均值滤波;而当a值很大时,输出则主要取决于a*▽I的大小,梯度信息能够得到保留。

  • C++实现灰度图像以及彩色图像的引导图滤波 根据原文献中提供的伪代码,不难用C++实现引导图滤波算法。伪代码如下:

这里需要分两种情况,1.引导图为单通道的灰度图;2.引导图为三通道的彩色图。

  1. 引导图为单通道 分别算出I与P的均值图像,以及I²和I*P的均值图像;再求出I的方差图像,以及I*P的协方差图像;利用公式求出a和b的值;再窗口内对a和b求均值;再根据公式算出输出图像。 这里又分为两种情况: ①输入图为单通道:按照上述步骤计算即可。 ②输入图为三通道:先分离三个通道,对每个通道进行上述滤波操作,然后合并通道即可。
  2. 引导图为三通道 此时,将上述模型做了稍微修改,如下:

不同之处在于求a时将原来的方差σ替换为协方差3x3矩阵∑k,表示如下:

U是3x3单位矩阵,求出来的a将不再是一个值,而是一个1*3的向量,然后求b。a为1*3的向量,μk为3*1的向量,相乘后b为一常量,由此可以求得常量b的值。 这里又分为两种情况: ①输入图为单通道:按照上述步骤计算即可。 ②输入图为三通道:先分离三个通道,对每个通道进行上述滤波操作,然后合并通道即可。 注:引导图为彩色图比引导图为灰度图,边界保护更加明显,见原文。

  • 效果验证

代码里面求均值部分,可以由OpenCV中的boxFilter()函数实现,或者blur()函数实现。总之是一个均值滤波器,之所以与窗口大小无关,是因为使用直方图实现的均值滤波,能够大大降低运算时间。VS2015+OpenCV3.4.0实现的代码放在我的码云code上:https://gitee.com/rxdj/guidedFilter.git。       主要输入参数就是引导图I,输入图P,窗口半径r,截断值ε,输出参数为滤波后图像Q。引导图I和输入图像P可以相同,也可以不同,比如stereo matching中常常用原参考图像作为引导图,对代价空间图进行引导图滤波以实现代价聚合。这样能尽量保留原图像边界区域的匹配代价,而平滑平坦区域的匹配代价。  (注:文献中的代码是通过matlab编写的,matlab中读取图像时会自动将图像归一化到0-1,因此截断值ε的设置也对应小很多,比如0.1,0.01等。而本文中读取图像后未进行归一化操作,所以截断值ε的设置会有不同。如果需要归一化,则自行读取图像后除以255即可)。

  1. 单通道灰度图原图

改变截断值ε   r=10, ε=0                            r=10,  ε=100            

r=10 , ε=2000                          r=10, ε=8000 

改变窗口半径r  r=0, ε=500                                   r=5, ε=500 

               r=10, ε=500                              r=20, ε=500 

  1. 三通道彩色图 原图

改变截断值ε   r=10, ε=0                            r=10,  ε=100                           

r=10 , ε=2000                          r=10, ε=8000 

改变窗口半径r r=0, ε=500                             r=5, ε=500                            

r=10, ε=500                              r=20, ε=500 


快速引导图滤波算法 快速引导图滤波算法见文献《fast guided filter》,上述主页中也有。快速的地方主要是采用了图像金字塔思想。步骤如下:

  1. 对引导图像I和输入图像P进行1/s的降采样,得到I', P';
  2. 利用I'和P'计算系数a和b,并计算输出图像Q';
  3. 将Q'进行s倍的上采样得到最终输出图像Q。

       由于计算部分是降采样的图像,运算量会大大减小,而不会引入明显的失真,因此成为快速引导图滤波。代码见上述码云code链接的fastGuidedFilter分支。

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏企鹅号快讯

机器学习三人行-支持向量机实践指南

关注公众号“智能算法”即可一起学习整个系列的文章。 文末查看本文代码关键字,公众号回复关键字下载代码。 其实逻辑回归算法和今天要讲的支持向量机有些类似,他们都是...

21690
来自专栏AI科技评论

干货 | 攻击AI模型之FGSM算法

本文将为您揭开白盒攻击中鼎鼎大名的FGSM(Fast Gradient Sign Method)算法的神秘面纱!

72720
来自专栏SeanCheney的专栏

《Scikit-Learn与TensorFlow机器学习实用指南》 第06章 决策树

和支持向量机一样, 决策树是一种多功能机器学习算法, 即可以执行分类任务也可以执行回归任务, 甚至包括多输出(multioutput)任务.

20620
来自专栏信数据得永生

《Scikit-Learn与TensorFlow机器学习实用指南》第13章 卷积神经网络

565110
来自专栏AI科技评论

干货 | 攻击AI模型之DeepFool算法

AI 科技评论按:本文为“兜哥带你学安全”系列之三,首发于AI科技评论,未经许可不得转载。

36730
来自专栏ATYUN订阅号

一文教你实现skip-gram模型,训练并可视化词向量

在本教程中,我将展示如何在Tensorflow中实现一个Word2Vec(Word2Vec是从大量文本语料中以无监督的方式学习语义知识的一种模型,它被大量地用在...

55940
来自专栏红色石头的机器学习之路

台湾大学林轩田机器学习技法课程学习笔记9 -- Decision Tree

上节课我们主要介绍了Adaptive Boosting。AdaBoost演算法通过调整每笔资料的权重,得到不同的hypotheses,然后将不同的hypothe...

27800
来自专栏IT大咖说

阿猫还是阿狗?AI视觉识别中目标检测的关键技术

内容来源:2018 年 04 月 21 日,AI教育求职平台景略集智创始人王文凯在“百度深度学习公开课·北京站:AI工程师的快速进阶之路”进行《目标检测面面观》...

10110
来自专栏瓜大三哥

图像分割(三) 之基于FPGA的局部自适应分割

图像分割(三) 之基于FPGA的局部自适应分割 在前面讲的自适应分割的原理如下: ? 由公式可以看出,窗口的分割值是对图像进行开窗,并计算窗口内的像素均值和标准...

26970
来自专栏机器学习算法与Python学习

支持向量机(SVM)--(4)

回忆:在上一篇文章中我们谈到为了使支持向量机能够处理非线性问题,进而引进核函数,将输入空间的输入数据集通过一个满足Mercer核条件的核函数映射到更高...

33160

扫码关注云+社区

领取腾讯云代金券