专栏首页ml二分查找算法基本思想

二分查找算法基本思想

转载http://www.cppblog.com/converse/archive/2009/10/05/97905.html

二分查找算法基本思想 二分查找算法的前置条件是,一个已经排序好的序列(在本篇文章中为了说明问题的方便,假设这个序列是升序排列的),这样在查找所要查找的元素时,首先与序列中间的元素进行比较,如果大于这个元素,就在当前序列的后半部分继续查找,如果小于这个元素,就在当前序列的前半部分继续查找,直到找到相同的元素,或者所查找的序列范围为空为止. 用伪代码来表示, 二分查找算法大致是这个样子的:

1 left = 0, right = n -1
2 while (left <= right)
3     mid = (left + right) / 2
4     case
5         x[mid] < t:    left = mid + 1;
6         x[mid] = t:    p = mid; break;
7         x[mid] > t:    right = mid -1;
8 
9 return -1;

第一个正确的程序 根据前面给出的算法思想和伪代码, 我们给出第一个正确的程序,但是,它还有一些小的问题,后面会讲到

int search(int array[], int n, int v)
{
    int left, right, middle;

    left = 0, right = n - 1;

    while (left <= right)
    {
        middle = (left + right) / 2;
        if (array[middle] > v)
        {
            right = middle;
        }
        else if (array[middle] < v)
        {
            left = middle;
        }
        else
        {
            return middle;
        }
    }

    return -1;
}

下面,讲讲在编写二分查找算法时可能出现的一些问题. 边界错误造成的问题 二分查找算法的边界,一般来说分两种情况,一种是左闭右开区间,类似于[left, right),一种是左闭右闭区间,类似于[left, right].需要注意的是, 循环体外的初始化条件,与循环体内的迭代步骤, 都必须遵守一致的区间规则,也就是说,如果循环体初始化时,是以左闭右开区间为边界的,那么循环体内部的迭代也应该如此.如果两者不一致,会造成程序的错误.比如下面就是错误的二分查找算法:

这个算法的错误在于, 在循环初始化的时候,初始化right=n,也就是采用的是左闭右开区间,而当满足array[middle] > v的条件是, v如果存在的话应该在[left, middle)区间中,但是这里却把right赋值为middle - 1了,这样,如果恰巧middle-1就是查找的元素,那么就会找不到这个元素.

下面给出两个算法, 分别是正确的左闭右闭和左闭右开区间算法,可以与上面的进行比较:

(下面这两个算法是正确的)

死循环 上面的情况还只是把边界的其中一个写错, 也就是右边的边界值写错, 如果两者同时都写错的话,可能会造成死循环,比如下面的这个程序:

 1 int search_bad2(int array[], int n, int v)
 2 {
 3     int left, right, middle;
 4 
 5     left = 0, right = n - 1;
 6 
 7     while (left <= right)
 8     {
 9         middle = (left + right) / 2;
10         if (array[middle] > v)
11         {
12             right = middle;
13         }
14         else if (array[middle] < v)
15         {
16             left = middle;
17         }
18         else
19         {
20             return middle;
21         }
22     }
23 
24     return -1;
25 }

这个程序采用的是左闭右闭的区间.但是,当array[middle] > v的时候,那么下一次查找的区间应该为[middle + 1, right], 而这里变成了[middle, right];当array[middle] < v的时候,那么下一次查找的区间应该为[left, middle - 1], 而这里变成了[left, middle].两个边界的选择都出现了问题, 因此,有可能出现某次查找时始终在这两个范围中轮换,造成了程序的死循环. 溢出 前面解决了边界选择时可能出现的问题, 下面来解决另一个问题,其实这个问题严格的说不属于算法问题,不过我注意到很多地方都没有提到,我觉得还是提一下比较好. 在循环体内,计算中间位置的时候,使用的是这个表达式:

middle = (left + right) / 2;

假如,left与right之和超过了所在类型的表示范围的话,那么middle就不会得到正确的值. 所以,更稳妥的做法应该是这样的:

middle = left + (right - left) / 2;

更完善的算法 前面我们说了,给出的第一个算法是一个"正确"的程序, 但是还有一些小的问题. 首先, 如果序列中有多个相同的元素时,查找的时候不见得每次都会返回第一个元素的位置, 比如考虑一种极端情况:序列中都只有一个相同的元素,那么去查找这个元素时,显然返回的是中间元素的位置. 其次, 前面给出的算法中,每次循环体中都有三次情况,两次比较,有没有办法减少比较的数量进一步的优化程序? <<编程珠玑>>中给出了解决这两个问题的算法,结合前面提到溢出问题我对middle的计算也做了修改:

 1 int search4(int array[], int n, int v)
 2 {
 3     int left, right, middle;
 4 
 5     left = -1, right = n;
 6 
 7     while (left + 1 != right)//这个循环维持的条件是left<right && array[left]<v<=array[right],所以到最后的时候,
 8     {//如果可以找到目标,则只剩下两个数,并且满足 array[left]<v<=array[right],是要查找的数是right
 9         middle = left + (right - left) / 2;
10 
11         if (array[middle] < v)//必须保证array[left]<v<=array[right],所以left = middle;
12         {//如果left =middle+1,则有可能出现 array[left]<=v的情况
13             left = middle;
14         }
15         else
16         {
17             right = middle;
18         }
19     }
20 
21     if (right >= n || array[right] != v)
22     {
23         right = -1;
24     }
25 
26     return right;
27 }

这个算法是所有这里给出的算法中最完善的一个,正确,精确且效率高.

但是这个算法的还是不能很好的理解

可以用下面的算法,可以找出满足条件的数

 1 int Bi_Search(int a[],int n,int b)//   
 2 {//返回等于b的第一个   
 3     if(n==0)  
 4         return -1;  
 5     int low = 0;  
 6     int high = n-1;  
 7     int last = -1;//用last记录上一次满足条件的下标   
 8     while (low<=high)  
 9     {  
10         int mid = low +(high-low)/2;  
11         if (a[mid]==b)  
12         {  
13             last = mid;  
14             high = mid -1;  
15         }  
16         else if(a[mid]>b)  
17             high = mid -1;  
18         else  
19             low = mid +1;  
20     }  
21   
22     return last;  
23   
24 }  
25 int Bi_Search1(int a[],int n,int b)//大于b的第一个数   
26 {  
27     if(n<=0)  
28         return -1;  
29     int last = -1;  
30     int low = 0;  
31     int high = n-1;  
32     while (low<=high)  
33     {  
34         int mid = low +(high - low)/2;  
35         if(a[mid]>b)  
36         {  
37             last = mid;  
38             high = mid -1;  
39         }  
40         else if (a[mid]<=b)  
41         {  
42             low =mid +1;  
43         }  
44     }  
45   
46     return last;  
47 }  
48 int Bi_Search(int a[],int n,int b)//
49 {//返回等于b的第一个
50     if(n==0)
51         return -1;
52     int low = 0;
53     int high = n-1;
54     int last = -1;//用last记录上一次满足条件的下标
55     while (low<=high)
56     {
57         int mid = low +(high-low)/2;
58         if (a[mid]==b)
59         {
60             last = mid;
61             high = mid -1;
62         }
63         else if(a[mid]>b)
64             high = mid -1;
65         else
66             low = mid +1;
67     }
68 
69     return last;
70 
71 }
72 int Bi_Search1(int a[],int n,int b)//大于b的第一个数
73 {
74     if(n<=0)
75         return -1;
76     int last = -1;
77     int low = 0;
78     int high = n-1;
79     while (low<=high)
80     {
81         int mid = low +(high - low)/2;
82         if(a[mid]>b)
83         {
84             last = mid;
85             high = mid -1;
86         }
87         else if (a[mid]<=b)
88         {
89             low =mid +1;
90         }
91     }
92 
93     return last;
94 }View Code 

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • poj----2155 Matrix(二维树状数组第二类)

    Matrix Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 16950 ...

    Gxjun
  • 简单的验证码识别(opecv)

           opencv版本: 3.0.0            处理验证码: 纯数字验证码 (颜色不同,有噪音,和带有较多的划痕)             ...

    Gxjun
  • HDUOJ---Can you solve this equation?

    Can you solve this equation? Time Limit: 2000/1000 MS (Java/Others)    Memory Li...

    Gxjun
  • 归并排序模板

           归并排序主要的思想是分治和合并,合并我觉得挺好理解的,分治是用递归实现的感觉不太好理解,我就贴一个模板,拿着就能用了。要是像仔细学习了解归并排序的...

    Ch_Zaqdt
  • 你真的会写二分查找吗?

    二分查找是一个基础的算法,也是面试中常考的一个知识点。二分查找就是将查找的键和子数组的中间键作比较,如果被查找的键小于中间键,就在左子数组继续查找;如果大于中间...

    Java团长
  • RNG输了,但我们不能输

    RNG输了,输在了轻敌,没有把G2当人看,随随便便bp,就是告诉你,我4保1奥巴马我也可以赢,结果啪啪啪打脸。

    乔戈里
  • 你真的会写二分检索吗?

    前几天在论坛上看到有统计说有80%的程序员不能够写对简单的二分法。二分法不是很简单的吗?这难道不是耸人听闻?

    芋道源码
  • 力扣LeetCode,区域和检索 - 数组不可变

    1、给定一个整数数组 nums,求出数组从索引 i 到 j (i ≤ j) 范围内元素的总和,包含 i, j 两点。

    别先生
  • 精典算法之二分查找法

    二分查找又称折半查找,优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而查找频繁的有序列...

    lpxxn
  • 【python内存机制】引用和赋值

    用户2398817

扫码关注云+社区

领取腾讯云代金券